1. (30) A wheel of radius r rolls without slipping and has an angular velocity ω. Write an expression for the velocity of point A in terms of ω, r, and θ. Show that the velocities of A and B are perpendicular to each other.

Ans. $v_A = 2\omega r \sin \frac{\theta}{2}$

2. (30) Determine the angular acceleration and the forces on the bearing at O for (a) the hoop of mass m and (b) the circular disc of mass m immediately after each is released from rest in the vertical plane with OG horizontal.

Ans. (a) $\alpha = \frac{g}{2r}$, $F_y = \frac{mg}{2}$

(b) $\alpha = \frac{2g}{3r}$, $F_y = \frac{mg}{3}$

3. (40) A drum A is given a constant angular acceleration $\alpha_0 = 3$ rad/s2 and causes the 70-kg wheel B to move on the horizontal surface by means of the cable which is wrapped around the inner hub of the wheel. The moment of inertia of the wheel is 4.375 kgm2 and the coefficient of friction between the wheel and the horizontal surface is 0.25. Determine the tension T in the cable and the friction force F exerted by the horizontal surface on the wheel.

Ans. $T = 154.58$ N, $F = 75.83$ N

Useful equations

$\ddot{v}_B = \ddot{v}_A + \ddot{v}_{B/A} = \ddot{v}_A + \dot{\omega} \times \dot{r}_{B/A}$

$\ddot{a}_B = \ddot{a}_A + \ddot{a}_{B/A} = \ddot{a}_A + (\ddot{a}_{B/A})_n + (\ddot{a}_{B/A})_t$

$(a)_t = r\alpha \quad (a)_n = r\omega^2$

$\sum F = m\ddot{a}_G \quad \sum M_G = I_G\ddot{\alpha}$
For a hoop, $I_G = mr^2$

For a disc, $I_G = \frac{1}{2}mr^2$