
Introduction to Computers, Problem
Solving, and Programming

Chapter Objectives

• To learn the different categories of computers

• To understand the role of each component in a computer

• To understand the purpose of an operating system

• To learn the differences between machine language, assembly language, and
higher level languages

• To understand what processes are required to run a C++ program

• To learn how to solve a programming problem in a careful, disciplined way

• To understand and appreciate ethical issues related to the use of computers
and programming

SINCE 1HE 1940s-a period of little more than 70 years-the develop­
ment of the computer has spurred the growth of technology into
realms only dreamed of at the turn of the twentieth century.
Computers have changed the way we live and how we do business.
Many of us use computers to register for courses, to send and receive
electronic mail (e-mail), to shop and bank from home, to retrieve
information from the World Wide Web, to research and write term
papers, and to do other homework assignments. Computers are a key
component of automatic teller machines (ATMs), and computers are
built into our cars and most household appliances. Computers can
receive, store, process, and output information of all kinds: numbers,
text, images, graphics, video, and sound, to name a few.

Although we're often led to believe otherwise, computers can­
not "think." Basically, computers are devices for performing com­
putations at incredible speeds (more than a billion instructions per

50 CHAPTER 1 Introduction to Computers, Problem Solving, and Programming

second) and with great accuracy. But, to accomplish anything
useful, a computer must be provided with a list of insttuctions, or a
program. Programs are usually written in special computer pro­
gramming languages-such as C++, the subject of this book and
one of the most versatile programming languages available today.

This chapter introduces the computer and its components and
then presents an overview of programming languages. We describe
a systematic approach to solving problems called the software
development method, and we use it to write a basic C++ program.
The chapter ends with a discussion of ethics for programmers.

1.1 Overview of Computers

stored-program com­
puter (von Neumann
architecture)
A computer design based
on the concept of stor­
ing a computer program
along with its data in
computer memory.

Most of us deal with computers every day, and we probably use computers
for word processing or for surfing the World Wide Web. And some of us may
even have studied programming in high school. But it wasn't always this
way. Not long ago, most people considered computers to be mysterious
devices whose secrets were known only by a few computer wizards.

Early Computers

If we take the literal definition for a computer as "a device for counting or
computing," then we could consider the abacus to have been the first com­
puter. The first electronic digital computer was designed in the late 1930s by
Dr. John Atanasoff and graduate student Clifford Berry at Iowa State
University. They designed their computer to help them perform mathemati­
cal computations in nuclear physics.

The first large-scale, general-purpose electronic digital computer, called
the ENIAC, was completed in 1946 at the University of Pennsylvania with
funding from the U.S. Army. The ENIAC weighed 30 tons and occupied a
30-by-50-foot space. It was used to compute ballistics tables, predict the
weather, and make atomic energy calculations. Its designers were J. Presper
Eckert and John Mauchley.

To program the ENIAC, engineers had to connect hundreds of wires
and arrange thousands of switches in a certain way. In 1946, Dr. John von
Neumann of Princeton University proposed the concept of a stored-program
computer-a computer whose program was stored in computer memory. Von
Neumann knew that the data stored in computer memory could easily be
changed by a program. He reasoned that programs, too, could be stored in
computer memory and changed far more easily than by connecting wires and

1.1 Overview of Computers

setting switches. Von Neumann designed a computer based on this idea. His
design was a success and greatly simplified computer programming. The von
Neumann architecture is the basis of the digital computer as we know it today.

Categories of Computers

Early computers used vacuum tubes as their basic electronic component.
Technological advances in the design and manufacture of these components
led to new generations of computers that were considerably smaller, faster,
and less expensive than their predecessors.

In the 1970s, the Altair and Apple computer companies manufactured
the first microcomputers. The computer processor in a microcomputer is an
electronic component called a microprocessor, which is about the size of a
postage stamp. Because they are so small and relatively inexpensive, micro­
processors are found in watches, pocket calculators, cameras, home appli­
ances, and automobiles, as well as in computers.

Most offices have one or more personal computers. Typical models cost
less than $2000 and sit on a desk, yet have as much computational power as
the giants of 20 years ago that cost more than $100,000 and filled a 9-by-12-
foot room. Today's computers come in even smaller models that can fit
inside a backpack or a person's hand (see Figure 1.1).

Personal computers are used by one person at a time. Businesses
and research labs use larger and faster computers called minicomputers
and mainframes, which can be used by many people simultaneously.

Figure 1.1 Netbook computer and hand-held computer

microcomputer
A computer that uses
a very small processor.
microprocessor
The processor found in
a microcomputer.
minicomputer
A computer for
businesses or research
laboratories that can

51

be used by many people
simultaneously.
mainframe
A computer with more
computational power
than a minicomputer
that is often used by
major corporations.

;2 CHAPTER 1 Introduction to Computers, Problem Solving, and Programming

;upercomputer
·he most powerful kind
1f mainframe computer,
1erforming in seconds
:amputations that might
ake hours or days on
1ther computers.
ime sharing
\process that allows
imultaneous access to a
ingle computer by a
1umber of users.

Supercomputers, the most powerful mainframe computers, can perform in
seconds computations that might take hours or even days on other computers.

Sharing Computer Resources

Time sharing is used on mainframes and minicomputers to allow simulta­
neous access to the computing resources. The problem with time sharing is
that users have to wait for their turn to access the resources. In the early
days, these waits could take minutes. And if the computer stops working, all
users are affected, as they must wait for the computer to be restarted.

Although microcomputers don't have the huge resources of mini­
computers and mainframes, they provide their users with dedicated
resources. Also if one microcomputer stops working, others are not affected.
The major disadvantage of early personal or workstation computers was
that they were isolated from the vast resources of the larger machines. In
Section 1.2, we see how computer networks solve this problem .

.. ·RCISES FOR SECTION 1.1

Self-Check

1. List the different kinds of computers from smallest to largest.

2. Why do you think each computer user in a time-shared environment is
unaware that others are also using the computer?

3. Describe the contributions of Atanasoff and Berry, Eckert and Mauchley,
and von Neumann.

1.2 Computer Hardware

1ardware
"he actual computer
:quipment.
;oftware
·he set of programs
1ssociated with a
:omputer.
)rogram
\ list of instructions
hat a computer uses
o manipulate data to
1erform a task.

A computer system consists of two major components: hardware-the
actual equipment used to perform the computations-and software-that
is, the programs. Programs let us communicate with a computer by giving it
the instructions it needs to operate. We discuss hardware in this section and
software in the next.

Despite their differences in cost, size, and capabilities, modern comput­
ers resemble each other in many basic ways. Essentially, most consist of the
following hardware components:

• Main memory

• Secondary memory, including storage media such as hard disks, flash
drives, and CD-ROMs

·-----------------------------------
1.2 Computer Hardware

• Central processing unit (CPU)

• Input devices, such as a keyboard and mouse

• Output devices, such as a monitor and printer

• Network connection, such as a modem or Ethernet interface

Figure 1.2 shows how these components interact in a computer when a
program is executed; the arrows show the direction of information flow.

The program must be transferred from secondary memory (or secondary
storage) to main memory before it can be executed. Data must be supplied from
some source. The person using a program (the program user) may supply data
through an input device such as a mouse or a keyboard, from a data file located
in secondary storage, or from a remote machine via the network connection.
The data are stored in the computer's main memory where they can be accessed
and manipulated by the central processing unit. The results of this manipulation
are stored back in main memory. Finally, the information (results) in main mem­
ory may be displayed through an output device such as a monitor or printer,
stored in secondary storage, or sent to another computer via the network. In
the remainder of this section, we describe these components in more detail.

CD USB
Flash drive

External hard drive

Monitor

Speaker

i Figure 1.2 Computer components

L

53

i4 CHAPTER 1 Introduction to Computers, Problem Solving, and Programming

1emory cell
,n individual storage
)Cation in memory.

ddress of a memory
ell
he relative position of a
1emory cell in the com­
uter's main memory.

ontents of a memory
ell
he information stored
1 a memory cell, either
program instruction

r data.

Memory

Memory is an essential component in any computer. Before discussing the
types of memory-main and secondary-let's look at what it consists of and
how the computer works with it.

Anatomy of Memory
Imagine the memory of a computer as a sequence of storage locations called
memory cells. To store and access information, the computer must have
some way of identifying the individual memory cells, so each memory
cell has a unique address that indicates its position in memory. Figure 1.3
shows a computer memory consisting of 1000 memory cells with addresses
0 through 999. Most computers have millions of individual memory cells,
each with its own address.

The data stored in a memory cell are called the contents of the cell. In
Figure 1.3, the contents of memory cell3 is the number -26 and the contents
of memory cell 4 is the letter H.

Memory cells can also contain program instructions. Cells 6 through 8 in
Figure 1.3 store instructions to add two numbers (from cells 1 and 3) and
store the result in memory cellS. You'll recall that in a von Neumann com­
puter, a program's instructions must be stored in main memory before they

Address Contents

0 -27.2

354

2
· •

0.005

3 -26

4 .H

5 400

6 R1V 001

7 ADD 003

8 STO 005

998 X

999 75.62

Figure 1.3 A thousand memory cells in main memory
~

L

1.2 Computer Hardware

can be executed. Whenever we open a new program, we change the com­
puter's operation by storing the new instructions in memory.

Bytes and Bits

A memory cell is actually a grouping of smaller units called bytes. A byte is
the amount of storage required to store a single character, such as the letter
H in cell 4 of Figure 1.3. The number of bytes a memory cell can contain
varies from computer to computer.

A byte is composed of even smaller units of storage called bits
(see Figure 1.4). There are eight bits to a byte. "Bit" derives from the words
binary digit and is the smallest element a computer can deal with. Binary
refers to a number system based on two numbers, 0 and 1; therefore, a bit is
either a 0 or a 1.

Storing and Retrieving Information m Memory

A particular pattern of zeros and ones (that is, bits) represents each value in
memory, whether it's a number, a letter, or an instruction such as ADD 003.
A computer can either store or retrieve a value. When storing a value, the
computer sends electronic signals to set each bit of a selected memory cell to
either 0 or 1; storing a value destroys the previous contents of the cell. When
retrieving a value from a memory cell, the computer copies the pattern of
Os and ls stored in that tell to another storage area for processing; copying
does not destroy the contents of the cell whose value is retrieved. This
process is the same regardless of the kind of information-character,
number, or program instruction-to be stored or retrieved.

Main Memory

Main memory, made of electronic circuitry on small computer chips, stores
programs, data, and results. Most computers have two types of main mem­
ory: random access memory (RAM) for temporary storage of programs,
data, and results, and read-only memory (ROM), which stores programs or
data permanently.

RAM temporarily stores programs while they are being executed by the
computer. It also temporarily stores information-for example, numbers,

hBit
l'o---o -,-o-,-,-o'"'o~ 1

-Byte-

Figure 1.4 Relationship between a byte and a bit

55

byte
The amount of storage
required to store a single
character.

bit (binary digit)
A binary unit represent­
ingaOoral.

storing a value in
memory
Setting the individual
bits of a memory cell
to 0 or 1, destroying its
previous contents.
retrieving a value
from memory
Copying the contents of
a particular memory cell
to another storage area
for processing.

random access
memory (RAM)
The part of main memory
that temporarily stores
programs, data, and
results.
read-only memory
(ROM)
The part of main memory
that permanently stores
programs or data.

56 CHAPTER 1 Introduction to Computers, Problem Solving, and Programming

volatile memory
Memory whose contents
disappear when you
switch off the computer.

secondary storage
Units such as disks or
flash drives that retain
data even when the
power to the drive is off.
disk
Thin platter of metal or
plastic on which data are
represented by magnet­
ized spots arranged in
tracks.

names, or pictures-that is being processed by the computer. RAM is usually
volatile memory, which means that when you switch off the computer, you
will lose everything stored in RAM. To prevent this, you should store the
contents of RAM in semipermanent secondary memory (discussed below)
before switching off your computer.

In contrast, ROM stores information permanently. The computer can
retrieve (or read) information but it can't store (or write) information in ROM­
hence its name, read-only memory. Because they're not volatile, the instruc­
tions and data stored in ROM don't disappear when you switch off the
computer. Most modern computers contain an internal ROM that stores the
instructions needed to get the computer rwming when you first switch it on.

Usually a computer contains much more RAM than internal ROM. The
amount of RAM can often be increased (up to a specified maximum), but
the amount of internal ROM is usually fixed. When we refer to main memory
in this text, we mean RAM because that is the part of mai..l1 memory that is
normally accessible to the programmer.

RAM is relatively fast memory, but is limited in size and is not perma­
nent memory. These features are in contrast to secondary memory, which,
although slower than RAM, is larger and more permanent.

Secondary Memory

Computet systems provide storage in addition to main memory for two
reasons. First, computers need storage that is permanent or semipermanent
so that information can be retained during a power loss or when the com­
puter is turned off. Second, systems typically store more information than
will fit in memory.

Figure 1.5 shows some of the most frequently used secondary storage
devices and storage media. Most personal computers use two types of disk
drives as their secondary storage devices-hard drives and optical drives.
Hard disks are attached to their disk drives and are coated with a magnetic
material. Each data bit is a magnetized spot on the disk, and the spots are
arranged in concentric circles called tracks. The disk drive read/write head
accesses data by moving across the spinning disk to the correct track and

0
CD Flash

drive

Figure 1.5 Secondary storage media

Hard
disk

--·--r-

f
!
I
I
!

I ,,

1.2 Computer Hardware

then sensing the spots as they move by. The hard disks in personal comput­
ers usually hold from one to several hundred gigabytes (GB) of data, but
clusters of hard drives that store data for an entire network may provide
many terabytes (TB) of storage (see Table 1.1).

Most of today's personal computers are equipped with optical drives
for storing and retrieving data on compact disks (CDs) or digital versatile
disks (DVDs) that can be removed from the drive. A CD is a silvery plastic
platter on which a laser records data as a sequence of tiny pits in a spiral
track on one side of the disk. One CD can hold 680MB of data. A DVD uses
smaller pits packed in a tighter spiral, allowing storage of 4.7 GB of data on
one layer. Some DVDs can hold four layers of data-two on each side-for
a total capacity of 17GB, sufficient storage for as much as nine hours of
studio-quality video and multichannel audio.

Flash drives such as the one pictured in Figure 1.5 use flash memory
packaged in small plastic cases about three inches long that can be plugged
into any of a computer's USB (Universal Serial Bus) ports. Unlike hard
drives and optical drives that must spin their disks for access to data, flash
drives have no moving parts and all data transfer is by electronic signal only.
In flash memory, bits are represented as electrons trapped in microscopic
chambers of silicon dioxide. Typical USB flash drives store 1 to a few GB of
data, but 64-GB drives are also available.

Information stored.on a disk is organized into separate collections called
files. One file may contain a C++ program. Another file may contain the
data to be processed by that program (a data file). A third file could contain
the results generated by a program (an output file). The names of all files
stored on a disk are listed in the disk's directory. This directory may be
broken into one or more levels of subdirectories or folders, where each
subdirectory stores the names of files that relate to the same general topic.
For example, you might have separate subdirectories of files that contain
homework assignments and programs for each course you are taking this

Table 1.1 Terms Used to Quantify Storage Capacities

Comparison
Term Abbreviation Equivalent to to Power of 10

Byte B 8 bits

Kilobyte KB 1,024 (210) bytes > 103

Megabyte MB 1,048,576 (220) bytes > 106

Gigabyte GB 1,073,741,824 (230) bytes > 109

Terabyte TB 1,099,511,627,776 (240) bytes > 1012

57

optical drive
Device that uses a laser
to access or store data
on a CD or DVD.

flash drive
Device that plugs into
USB port and stores data
bits as trapped electrons.

file
Named collection of data
stored on a disk.

directory
A list of the names of
files stored on a disk.
subdirectory
A list of the names of
files that relate to a
particular topic.

58 CHAPTER 1 Introduction to Computers, Problem Solving, and Programming

central processing
unit (CPU)
Coordinates all computer
operations and performs
arithmetic and logical
operations on data.

fetching an
instruction
Retrieving an instruction
from main memory.

integrated circuit (IC)
An electronic device
containing a large
number of circuits/
components housed
inside a silicon case.
microprocessor
A central processing
unit packaged in an
integrated circuit.
register
A high-speed memory
location inside the CPU.
keyboard
A computer input device
for typing sequences of
letter or digit characters.
cursor
A moving place marker
that indicates the
position on the screen
where the next character
will be displayed.
function keys
A special keyboard key
used to select a particu­
lar operation; the opera­
tion selected depends on
the program being used.

semester. The details of how files are named and grouped in directories vary
with each computer system. Follow the naming conventions that apply to
your system.

Central Processing Unit

The central processing unit (CPU) has two roles: coordinating all computer
operations and performing arithmetic and logical operations on data. The
CPU follows instructions in computer programs to determine which opera­
tions to carry out and in what order. It then transmits control signals to the
other computer components. For example, when instructed to read a data
item, the CPU sends the necessary control signals to the input device.

To process a program stored in main memory, the CPU retrieves each
instruction in sequence (called fetching an instruction), decodes the instruc­
tion, and then retrieves any data needed to carry out that i<'1struction. Next, the
CPU processes the data it retrieved and stores the results in main memory.

The CPU can perform arithmetic operations such as addition, subtrac­
tion, multiplication, and division. It can also compare the contents of two
memory cells-for example, deciding which contains the larger value or
if the values are equal-and make decisions based on the results of that
comparison.

The circuitry of a modern CPU is housed in a single integrated circuit
(IC) or chip-millions of miniature circuits manufactured on a sliver of
silicon. An integrated circuit that is a full central processing unit is called a
microprocessor. A CPU's current instruction and data values are stored
temporarily inside the CPU in special high-speed memory locations called
registers.

Input/Output Devices

We use input/ output (1/0) devices to communicate with the computer-to
enter data for a computation and to observe the results of that computation.
The most common input device is a keyboard and the most common output
device is a monitor.

A computer keyboard resembles a typewriter keyboard (see Figure 1.6).
When you press a letter or digit key, that character is sent to main memory
and is displayed on the monitor at the position of the cursor, a moving place
marker. A computer keyboard has extra keys for special purposes. For exam­
ple, on the keyboard shown in Figure 1.6, the 12 keys in the top row labeled
Fl through F12 are function keys. The functions of these keys depend on the
program currently being executed; that is, pressing F4 in one program will
usually not produce the same results as pressing F4 in another program.

1.2 Computer Hardware 59

Escape
key

Function
keys

Backspace
key

Enter (Return)
key

Num lock
key

Tab
key

Caps lock
key

shift -~~~4rrW'1TF9Fr~9F9iFrwlTF.~,
key

Cit/

Control
key

Alternate
key

Figure 1.6 Computer keyboard

Delete
key

Cursor
control keys

Other special keys let you delete characters, move the cursor, and "enter" a
line of data you typed at the keyboard.

Another common input device is a mouse, a handheld pointing device.
Moving the mouse on your desk causes the mouse cursor, a small arrow or
symbol on the screen, to move in the same direction as the mouse. You can use
the mouse to select an operation by pointing and clicking: moving the mouse
cursor to a word or picture (called an icon) that represents the computer
operation and then pressing a mouse button to start the operation selected.

A scanner is used to process a page of text or a picture and to generate
a sequence of bits as its digital image. This digital image is sent to memory
so it can be processed and stored on disk. Some printers include a scanner.

A Webcam (abbreviation for Web camera) is a device that sends a video
to a computer. Webcams are often used to send a video of the person using
the computer over the Internet.

A monitor displays the output of currect computer operations. Once the
image disappears from the monitor screen, it is lost. If you want a hard copy
(a printed version) of some information, you must send that information to
a different output device, a printer.

Computer Networks

Network technology was invented to connect computers together and let
them share resources. Unlike a mainframe, which is a single computer
shared by many users, a network is made of many computers that share
resources. Within an organization, a local area network (LAN) lets many
personal computers access sharable resources from a larger computer called

mouse

Numeric
keypad

A handheld input device
that moves a cursor on
the computer screen
to select an operation.

icon
A picture representing
a computer operation
that is activated by
clicking a mouse.
scanner
A device for generating
a digital image of a
document or picture.

monitor
A computer output
device for providing
a temporary display
of information.

network
An interconnected col­
lection of computers
that share resources.

local area network
(LAN)
A network of computers
in a single organization.

---~-~---------------------

60 CHAPTER 1 Introduction to Computers, Problem Solving, and Programming

;erver
\ computer that provides
·esources to other com­
>uters in a network.
vide area network
WAN)
\ network such as the
nternet that connects
:omputers and LANs over
1 large geographic area.
nternet
\n interconnected group­
ng of computer networks
rom all over the world;
1rovides access to the
Vorld Wide Web.

Figure 1.7 Local area network

a server (see Figure 1.7). A network that links individual computers and
local area networks over a large geographic area is called a wide area
network (WAN) (see Figure 1.8). The best-known WAN is the Internet,
which is composed of university, corporate, government, and public-access
networks. The World Wide Web is accessed via the Internet.

Satellite

- I

Local area network (LAN)

'igure 1.8 A wide area network with satellite relays of microwave signals

1.2 Computer Hardware

If your computer is connected to a modem, you can connect to the
Internet through a telephone line or television or fiber-optic cable. A modem
(modulator demodulator) converts binary computer data into a form that
can be transmitted to another computer. At the computer on the receiving
end, another modem converts the signal received back to binary data. Early
modems for telephone lines transmitted at only 300 baud (300 bits per
second). Today's telephone modems transmit over 50,000 bits per second, or
if you have a digital subscriber line (DSL connection), the associated
modem can transmit 1.5 million bits per second while allowing you to use
the same line simultaneously for voice calls. Another high-speed option is
cable Internet access, which brings Internet data to your computer along a
channel just like a television channel, using the same coaxial cable that
carries cable TV.

The World Wide Web

The World Wide Web (the Web) was introduced in 1989; it is the newest
and the most popular feature on the Internet. The Web was developed
at CERN (the European Laboratory for Particle Physics) as an effec­
tive and uniform way of accessing all the information on the Internet.
Today you can use the Web to send, view, retrieve, and search for infor­
mation or to create a Web page. (There are no controls or checks for accu­
racy on the Web; you should keep this in mind when reading or using
such information.)

To access and navigate the Web, you need a Web browser. A Web browser
is a program with a graphical user interface (GUI) that displays the text and
graphics in a Web document and activates the hyperlinks to other documents.
Clicking on a link to a Web document causes that document to be transferred
from the computer where it is stored to your own computer.

S FOR SECTION 1.2

Self-Check

1. What are the contents of memory cells 1 and 998 in Figure 1.3? What
memory cells contain the letter Hand the number 75.62?

2. Explain the purpose of main memory, secondary memory, CPU, and the
disk. What input and output devices will be used with your computer?
What is a computer network?

3. List the following in order of smallest to largest: byte, bit, main memory,
WAN, memory cell, secondary memory, LAN.

61

modem
A device that converts
binary data into a form
that can be transmitted
between computers
over telephone lines
or coaxial cable.
DSL connection (dig­
ital subscriber line)
A high-speed Internet
connection that uses
a telephone line and
does not interfere with
simultaneous voice
communication on
the same line.
cable Internet access
Two-way high-speed
transmission of Internet
data over the coaxial
cable that carries cable
television signals.
World Wide Web
A collection of intercon­
nected documents that
may be accessed from
virtually any computer
in the world.

Web browser
A program that lets users
display and view a Web
document and activate
links to other documents.
graphical user
interface (GUI)
Displayed pictures and
menus that allow users
to select commands
and data.
hyperlink
A connection in a Web
document to other relat­
ed documents that users
can activate by pressing
a mouse button.

62 CHAPTER 1 Introduction to Computers, Problem Solving, and Programming

4. What do you think each of the instructions in memory cells 6 though 8
in Figure 1.3 means?

5. Which came first, the Internet or the World Wide Web?

6. Indicate whether each of these devices usually provides temporary, semi­
permanent, or permanent storage: ROM, RAM, flash drive, CD, hard disk.

7. Which device from the list in Exercise 6 does a word processor use to
store a letter while it is being typed? To store the letter after you are
finished? To store a software package you purchase? To store some very
large files you no longer need?

8. Explain the use of a Web browser and hyperlinks in a Web document.

9. If a computer were instructed to sum the contents of memory cells 1 and
3 of Figure 1.3 and store the result in memory cell 5, what would be
stored in memory cell 5?

10. One bit can have two values, 0 or 1. A combination of 2 bits can have
values 00, 01, 10, 11. List the values you can have with 3 bits. Do the
same for 4 bits. Write a formula that tells you how many values you can
have with n bits.

1.3 Computer SQftvJare

operating system (OS)
Software that controls
a user's interaction with
the computer hardware
and software and that
manages the computer
resources.

In the previous section, we surveyed the components of a computer system,
collectively called hardware. We also covered the basic operations by which
a computer accomplishes tasks: repeated fetching and execution of instruc­
tions. In this section, we focus on these all-important lists of instructions,
called computer programs or computer software. We will first consider
the' software that makes the hardware accessible to the user, then look at the
various levels of computer languages in which software is written and at
the process of creating and running a new program.

Operating System

The computer programs that control the interaction of the user with the
computer hardware compose the operating system (OS). The operating
system may be compared to the conductor of an orchestra, for it is respon­
sible for directing all computer operations and managing all computer
resources. Usually, part of the operating system is stored permanently in
a read-only memory (ROM) chip so it will be available as soon as the
computer is turned on. (A computer can look at the values in ROM but
can't write new values to the chip.) This portion of the OS contains the

J

1.3 Computer Software

instructions that will load into RAM the rest of the operating system code,
which typically resides on disk. Loading the operating system into RAM
is called booting the computer.

Among the operating system's many responsibilities are the following:

1. Communicating with the computer user: receiving commands and
carrying them out or rejecting them with an error message.

2. Managing allocation of memory, processor time, and other resources for
various tasks.

3. Collecting input from the keyboard, mouse, and other input devices,
and providing this data to the currently running program.

4. Conveying program output to the screen, printer, or other output device.

5. Accessing data from secondary storage.

6. Writing data to secondary storage.

In addition, the OS of a computer with multiple users must verify each
user's right to use the computer and ensure that each user can access only
data for which he or she has authorization.

Table 1.2 lists some widely used operating systems. An OS with a·
command-line interface displays a brief message called a prompt that indi­
cates readiness to receive input; the user can then type a command at the
keyboard. Listing 1.1 shows the entry of a UNIX command (ls temp/mise)
requesting a list of the' names of all the files (Gridvar. epp, Gridvar. exe,

Gridok. dat) in subdirectory mise of directory temp. Here, the prompt is

Table 1.2 Some Widely Used Operating Systems Characterized by Interface Type

Command-Line Interface

UNIX

MS-DOS

VMS

Graphical User Interface

Macintosh OS

Windows 7

Windows Vista

OS/2 Warp

UNIX+ X Window System

Linux

Listing 1.1 Entering a UNIX command to display a directory

myeomputer:-> ls temp/mise

Gridvar.epp Gridvar.exe Gridok.dat

myeomputer:->

63

booting the computer
Starting the computer
by loading part of the
operating system from
disk into memory (RAM)
and executing it.

prompt
A message displayed by
the computer indicating
its readiness to receive
data or a command
from the user.

64 CHAPTER 1

tpplication programs
;oftware used for a
pecific task such as word
1rocessing, accounting, or
latabase management.

Introduction to Computers, Problem Solving, and Programming

mycomputer: ->. (In this and all subsequent listings showing program runs,
input typed by the user is shown in color to distinguish it from computer­
generated text.)

In contrast, operating systems with a graphical user interface provide
the user with a system of icons and menus. To issue commands, the user
moves the mouse or touch-pad cursor to point to the appropriate icon or
menu selection and pushes a button once or twice. Figure 1.9 shows the
window that pops up when you double-click on the My Computer icon on
the desktop of a Windows GUI. You can view the directories of the hard
drive (C:), backup drive (D:), optical drive (E:), or flash drive (F:) by double­
clicking the appropriate icon.

Application Software

Application programs are designed to accomplish specific tasks. For exam­
ple, a word-processing application such as Microsoft Word or WordPerfect
creates a document, a spreadsheet application such as Excel automates
tedious numerical calculations and generates charts that depict data, and

'f M.yComputer · ~, ". · · __ · . ~~IKJ
File Edit View Favorites Tools Help

System Tasks

.• ~ &fVieWs~st!!minformation
.· .. ·.t0 Add'or remove programs

·•·~··th~rigea setting

other Places

··· 'S• My Network Places

.· I!EJ My Doruments

N DVD-RW Drive (E:)

~
EPSON Perfection 3170
Image: scanner

lCJ Shared Documents

'igure 1.9 Accessing secondary storage devices through Windows

~ Local Disk {D:)

~ Removable Disk (F:)

Mobile Device

:u Owner's Documents

I
I
I
I.

I
!

I

1.3 Computer Software

a database management application such as Access or dBASE enables data
storage and quick keyword-based access to large collections of records.

Computer users typically buy application software on CDs or they
download software files from a Web site. The software is saved on the hard
disk and then installed which makes it ready to use. When buying software,
verify that the program you are purchasing is compatible with both your
operating system and your computer hardware. Programmers use program­
ming languages, the subject of the next section, to write most commercial
software.

Programming Languages

Developing new software requires writing lists of instructions for a computer
to execute. Software developers rarely write instructions in machine language,
a language of binary numbers directly understood by a computer. A drawback
of machine language is that it is not standardized: every type of CPU has a
different machine language. This same drawback also applies to the somewhat
more readable assembly language, a language in which computer operations
are represented by mnemonic codes rather than binary numbers, and variables
can be given names rather than binary memory addresses.

Table 1.3 shows a small machine language program fragment that adds
two numbers and an equivalent fragment in assembly language. Notice that
each assembly language instruction corresponds to exactly one machine lan­
guage instruction. (The assembly language memory cells labeled A and B
are space for data; they are not instructions.) The symbol? indicates that we
don't know the contents of the memory cells with addresses 00000100 and
00000101.

To write programs that are independent of the CPU on which they will be
executed, software designers use high-level languages, which combine alge­
braic expressions and English words. For example, the machine/assembly

Table 1.3 A Program in Machine and Assembly Language

Machine Language Assembly Language
Memory Addresses Instructions Instructions

00000000 00010101 RTV A

00000001 00010110 ADD B

00000010 00110101 STO A

00000011 01110111 HLT

00000100 ? A ?

00000101 ? B ?

65

installing software
Making an application
available on a computer
by copying it from a CD
or downloading it from
a Web site.

machine language
A list of binary
instructions for a
particular CPU.

assembly language
A language whose
instructions are in the
form of mnemonic codes
and variable names.

high-levellanguage
A machine programming
language that combines
algebraic expressions
and English words.

-------------------------------------,_.....

66 CHAPTER 1 Introduction to Computers, Problem Solving, and Programming

method
ll.n operation that can be
Jerformed on an object's
jata.

1bstraction
ll. representation or
Tlodel of a physical
Jbject.

language program fragment shown in Table 1.3 would be a single statement
in a high-level language:

a = a + b;

This statement means" Add the data in memory cells a and b, and store the
result in memory cell a (replacing its previous value)."

Many high-level languages are available. Table 1.4 lists some of the most
widely used ones along with the application areas that first popularized them.

Object-Oriented Programming

We will focus on C++, an object-oriented programming language derived
from C. C++ was developed by Bjarne Stroustrup of AT&T's Bell Laboratories
in the mid-1980s and was formally standardized in 1998. Object-oriented
programming languages are popular because they make it easier to reuse
and adapt previously written software. Another object-oriented language
listed in Table 1.4 is Java, which is widely used on the Web.

An object is an entity that has particular properties. Some of these
properties can be encoded into a computer program as data and some can
be encoded as methods for operating on the data.

As an example of an object, consider a hypothetical automobile. You may
visualize wheels, a steering wheel, a body shape, and a color. These are the
attributes, or data, of the automobile. You can also imagine the actions asso­
ciated with operating an automobile, such as starting the engine, driving for­
ward or in reverse, and applying the brakes. These activities are analogous to
methods. The attributes and methods we use to characterize an automobile
are an abstraction, or model, of an automobile.

fable 1.4 Common High-Level Languages

-ligh-Level Language

BASIC

:OBOL

FORTRAN (Formula translation)

fava

~isp

Original Purpose

Teaching college students how to use the computer in their courses

Writing system software

Extension of C supporting object-oriented programming

Performing business data processing

Performing engineering and scientific applications

A highly portable object-oriented language used for programming
on the Web

Performing artificial intelligence applications that require
manipulating abstract symbols

1.3 Computer Software

The description of an automobile thus provides a definition of a hypo­
thetical automobile. As such, it describes a class-the class automobile. The
class definition can be used as a template to construct actual objects, or
instances of the class, such as your car and your parents' car. Both cars have
all the attributes of an automobile, but they. differ in detail-for example,
one may be red and the other white.

The distinction between the terms class and object sometimes gets a bit
blurry. A class definition, or class, describes the properties (attributes) of an
abstract or hypothetical object. Actual objects are instances of the class. An
object's data fields provide storage for information, and an object's methods
process or manipulate this information. Some of the data stored in an object
may be computed using a method. For example, fuel efficiency can be com­
puted from the power of the engine and the weight of the car (along with
some other factors). Table 1.5 shows some attributes of the class automobile
and two objects of that class.

Classes can have other classes as components. For example, a car has an
engine and wheels; both components can be defined as separate classes.
Finally, classes can be organized into a hierarchy of subclasses and
superclasses, where a subclass has all the properties of a superclass and
some additional properties that are not part of the superclass. Figure 1.10
shows that the class automobile is a subclass of the class vehicle (an automo­
bile is a vehicle that has passenger seats), and the class vehicle is a superclass
of the class automobile. The class truck is also a subclass of the class vehicle
(a truck is a vehicle that has a truck bed), and the class vehicle is also a super­
class of the class truck. The class sports car is a subclass of the class automobile
(a sports car is an automobile with a powerful engine), so it is also a subclass
of the class vehicle but not of the class truck. The classes vehicle and automobile
are both superclasses of the class sports car.

Objects in a subclass inherit properties (both data and methods) from
a superclass. For example, all three subclasses shown in Figure 1.10 have
a driver's seat and can be driven (properties inherited from class vehicle).

These basic principles help programmers organize their solutions
to problems. In particular, rather than starting each program from scratch,
programmers use object-oriented programming because it encourages reuse

Table 1.5 The Relationship Between a Class and Objects of the Class

Class automobile Object yourCar Object parentsCar

Color Red White

Make Toyota Buick

Model Coupe Sedan

Year 1999 2003

67

class
An entity that defines
the properties of a hypo­
thetical object.
object
A member, or instance,
of a class that has all
the properties described
by the class definition.

subclass
A class that is derived
from a superclass
but with additional
attributes.
superclass
A class that serves as
a base class for other
classes with additional
attributes.

8 CHAPTER 1 Introduction to Computers, Problem Solving, and Programming

Vehicle

Has: driver's seat
can be driven

/ ~
Truck Automobile

Has: truck bed Has: passenger seats

Sports Car

Has: powerfulengine

Figure 1.10 A class hierarchy

of code (programs) that are already written. They can use existing classes as
components of new classes, or they can create new classes that are subclasses
of existing classes. Either way, methods that were programmed for the
existing classes can be used with objects of the new classes. In this book, we
will focus on using existing classes as components of new classes rather than
creating s4bclasses of existing classes.

SES FOR SECTION 1.3

Self-Check

1. What do you think the six high-level language statements below mean?
a. profit = gross - net;

b. fahren = 1.8 * celsius + 32;

c. fraction = percent I 100.0;

d. s urn = s urn + x ;

e. newPrincipal = oldPrincipal * (1.0 + interest);

£ celsius = 5 * (fahren - 32.0) I 9;

2. List two reasons why it would be preferable to write a program in C++
rather than machine language.

3. Explain the relationship between the data and methods of a class.

4. What are two ways that object-oriented programming facilitates code
reuse by programmers?

5. What is an abstraction in programming?

6. Is an object an instance of a class or vice versa?

1.4 Processing a High-Level Language Program

1.4 Processing a High-Level Language Program

Although programmers find it much easier to express problem solutions in
high-level languages, computers do NOT understand these languages. Before
a high-level language program can be executed, it must be translated into the
target computer's machine language. The program that does this translation
is called a compiler. Figure 1.11 illustrates the role of the compiler in
the process of developing and testing a high-level language program. Both the
input to and (when successful) the output from the compiler are programs.

The input to the compiler is a source file containing the text of a high-level
language program. The software developer creates this file with a word proces­
sor or editor. The source file is in text format, which means that it is a collection
of character codes. For example, you might type a program into a file called
myprog. cpp. The compiler will scan this source file, checking to see if it follows
the high-level language's rules of syntax (grammar). If the program is syntacti­
cally correct, the compiler saves, in an object file, the machine language
instructions that carry out the program's purpose. For program myprog. cpp,

the object file created might be named myprog. obj. This file's format is binary,
which means that you should not send it to a printer, display it on your moni­
tor, or try to work with it in a word processor because it will appear to be mean­
ingless garbage. If the source program contains syntax errors, the compiler lists
these errors but does not create an object file. The developer must return to the
editor, correct the errors, 'and recompile the program.

Although an object file contains machine language instructions, not all of
the instructions are complete. High-level languages provide the software devel­
oper with many named chunks of code for operations that he or she will likely
need. Almost all high-level language programs use at least one of these code
chunks, which reside in other object files available to the system. The linker
program combines code from other object files with the new object file, creating
a complete machine language program that is ready to run. For your sample
program, the linker might name the executable file it creates myprog. exe.

As long as myprog. exe is just stored on your disk, it does nothing. To
run it, the loader must copy all its instructions into memory and direct the
CPU to begin execution with the first instruction. As the program runs, it
takes input data from one or more sources and sends results to output
and/ or secondary storage devices.

Some computer systems require the user to ask the OS to separately carry
out each step illustrated in Figure 1.11. However, many high-level language
compilers are now sold as part of an integrated development environment
(IDE), a package that combines a simple editor with a compiler, linker, and
loader. IDEs give the developer menus from which to select steps, and if the
developer tries a step that is out of sequence, the environment simply fills in
the missing steps automatically.

69

compiler
Software that translates
a high-level language
program into machine
language.
source file
File containing a pro­
gram written in a high­
level language; the input
for a compiler.
editor
Software used to create,
edit (change), and store
a source file on disk.
syntax
Grammar rules of a pro­
gramming language.
object file
File of machine language
instructions that is the
output of a compiler.

linker
Software that combines
object files to create
an executable machine
language program.
loader
Software that copies
an executable machine
language program into
memory and starts
its execution.
integrated develop­
ment environment
(IDE)
Software package
combining an editor,
a compiler, a linker, a
loader, and tools for
finding errors.

CHAPTER 1 Introduction to Computers, Problem Solving, and Programming

Editor
Used to

type in program
and corrections

Compiler
··Attempts to

translate program
into machine

code

Unsuccessful
t

Error
Messages

Successful

Object File

Linker
Resolves·

cross-references
among

object files

Input data

gure 1.11 Preparing a high-level language program for execution

Executable File
(load module)

Loader
Copies executable
file into memory;
initiates execution

of instructions

Results

1.4 Processing a High-Level Language Program

One caution: the IDE might not automatically save to disk the source,
object, and executable files created by the programmer; it may simply leave
these programs in memory. This approach saves the time and disk space
needed to make copies, and keeps the code available in memory for applica­
tion of the next step in the translation/ execution process. But the developer
can risk losing the only copy of the source file if a serious program error causes
termination of the IDE program. To prevent such a loss, users must explicitly
save the source file to disk after every modification before attempting to run
the program.

Executing a Program

To execute a program, the CPU must examine each program instruction in
memory and send out the command signals required to carry out the
instruction. Although normally the instructions are executed in sequence, as
we will discuss later, it is possible to have the CPU skip over some instruc­
tions or execute some instructions more than once.

While a program runs, data can be entered into memory and manipu­
lated in some specified way. Special program instructions are used for enter­
ing a program's data (called input data) into memory. After the input data
have been processed, instructions for displaying or printing values in mem­
ory can be executed to display the program results. The lines displayed by a
program are called the program output.

Let's look at the example shown in Figure 1.12-executing a water bill
program stored in memory. Step 1 of the program enters into memory data
that describe the amount of water used. In Step 2, the program manipulates
the data and stores the results of the computations in memory. In the final
step, the computed results are displayed as a water bill.

Self-Check

1. Would a syntax error be found in a source program or an object pro­
gram? What system program would find a syntax error if one existed?
What system program would you use to correct it?

2. Explain the differences between a source program, an object program,
and an executable program. Which do you create, and which does the
compiler create? Which does the linker or loader create?

3. What is an IDE? What does the program developer need to be concerned
about when using an IDE?

71

input data
The data values that are
entered by a program.

program output
The lines displayed
by a program.

72 CHAPTER 1 Introduction to Computers, Problem Solving, and Programming

Step 1

Program

input

Memory

Machine language
program for
computing water
bill

Data entered
during execution

Figure 1.12 Flow of information during program execution

Step 3

Output results:
water bill

4. Explain how you could lose your source program if an error occurs
while running a program using an IDE.

5. Explain the role of the compiler, linker, loader, and editor.

1.5 The Software Development Method

Programming is a problem-solving activity. If you are a good problem solver,
you have the potential to become a good programmer, so one goal of this book
is to help you improve your problem-solving ability. Problem-~olving methods
vary with subject area. Business students learn to solve problems with a
systems approach, while engineering and science students use the engineering
and scientific method. Programmers use the software development method.

We will focus on the first five steps listed below. The last step applies to
commercial software, not student programs.

1. Specify the problem requirements.

2. Analyze the problem.

3. Design the algorithm to solve the problem.

4. Implement the algorithm.

1.5 The Software Development Method

5. Test and verify the completed program.

6. Maintain and update the program.

PROBLEM

Specifying the problem requirements forces you to state the problem clearly and
unambiguously to gain a precise understanding of what is required for its
solution. Your objective is to eliminate unimportant aspects and zero in on the
root problem. This goal may not be as easy to achieve as it sounds. You may,
for instance, need more information from the person who posed the problem.

ANALYSIS

Analyzing the problem involves identifying the problem inputs (the data you
have to work with), outputs (the desired results), and any additional
requirements for or constraints on the solution. At this stage, you should
also determine the format in which the results should be displayed (for
example, as a table with specific column headings) and develop a list of
problem variables and their relationships. These relationships may be
expressed as formulas.

If Steps 1 and 2 are not done properly, you will solve the wrong problem.
Read the problem statement carefully (1) to obtain a clear idea of the problem
and (2) to determine the·inputs and outputs. It may be helpful to underline
phrases in the problem statement that identify the inputs and outputs, as in
the following example:

Compute and display the total cost of apples given the number of pounds
of apples purchased and the cost per pound of apples.

Next, summarize the information contained in the underlined phrases:

Problem Inputs

quantity of apples purchased (in pounds)
cost per pound of apples (in dollars per pound)

Problem Output

total cost of apples (in dollars)

Once you know the problem inputs and outputs, develop a list of for­
mulas that specify relationships between them. The general formula

Total cost = Unit cost X Number of units

computes the total cost of any item purchased. Using the variables for our
particular problem, we get the formula

Total cost of apples= Cost per pound X Pounds of apples

73

74 CHAPTER 1 Introduction to Computers, Problem Solving, and Programming

abstraction.
The process of modeling
a problem to extract the
essential variables and
their relationships.

algorithm
A list of steps for solving
a problem.

top-down design
Breaking a problem into
its major subproblems
and then solving the
subproblems.

algorithm refinement
Developing a detailed
list of steps to solve
a particui;Jr step in an
algorithm.

desk -checking
The step-by-step simula­
tion of the computer
execution of an
algorithm.

This process of modeling a problem to extract the essential variables and
their relationships is called abstraction.

DESIGN

Designing the algorithm to solve the problem requires you to develop a list of steps
(an algorithm) to solve the problem and then verify that the algorithm solves
the problem as intended. Writing the algorithm is often the hardest part of the
problem-solving process. Don't try to solve every detail of the problem at the
beginning; instead, use top-down design. In top-down design (also called
divide and conquer), you first list the major steps, or subproblems, that need to
be solved, then solve the original problem by solving each of its subproblems.
Most computer algorithms consist of at least the following subproblems.

ALGORITHM FOR A PROGRAMMING PROBLEM
1. Get the data.

2. Perform the computations.

3. Display the results.

Once you know the subproblems, you can attack each one individually. The
perform-the-computations step, for example, may need to be broken down into
a more detailed list of steps through a process called algorithm refinement.

You are using top-down design when creating an outline for a term
paper. You first create an outline of the major topics, then refine it by filling
in subtopics for each major topic. Once the outline is complete, you begin
writing the text for each subtopic.

Desk-checking is an important, and often overlooked, part of algorithm
design. To desk check an algorithm, you must carefully perform each algo­
rithm step (or its refinements) just as a computer would and verify that
the algorithm works as intended. You'll save time and effort if you locate
algorithm errors early in the problem-solving process.

IMPLEMENTATION

Implementing the algorithm (Step 4 in the software development method)
involves writing it as a program-converting each algorithm step into one
or more statements in a programming language.

TESTING

Testing and verifying the program requires testing the completed program to
verify that it works as desired. Don't rely on just one test case; run the program
several times using different sets of data, making sure that it works correctly
for every situation provided for in the algorithrri.

;
:~ ;

··.::

:.· .

~-"'----------- -- --- ---· -·· --------------

1.6 Applying the Software Development Method

MAINTENANCE

Maintaining and updating the program involves modifying a program to
remove previously undetected errors and to keep it up-to-date as govern­
ment regulations or company policies change. Many organizations main­
tain a program for five years or more, often after the programmers who
originally coded it have left.

A disciplined approach is essential if you want to create programs that
are easy to read, understand, and maintain. You must follow accepted
program style guidelines (which will be stressed in this book) and avoid
tricks and programming shortcuts.

Caution: Failure Is Part of the Process

Although a step-by-step approach to problem solving is helpful, it does not
guarantee that following these steps will result in a correct solution t.he first
time, every time. The importance of verification highlights an essential truth of
problem solving: The first (and also the second, third, or twentieth) attempt at
a solution may be wrong. Probably the most important distinction between out­
standing problem solvers and less proficient ones is that the former are not dis­
couraged by initial failures. Instead, they see the faulty and near-correct early
solutions as pointing toward a better understanding of the problem. One of the
most inventive problem solvers of all time, Thomas Edison, is noted for his
positive interpretation of the thousands of failed experiments that contributed
to his incredible record of invention; he always saw those failures in terms of
the helpful data they yielded about what did not work.

FOR SECTION 1.5

Self-Check

1. List the steps of the software development method.

2. Do you desk-check an algorithm before you refine it or after you refine
it? Explain your answer.

1.6 Applying the Software Development Method

l Throughout this book, we use the first five steps of the software develop-
J.

f ment method to solve programming problems. These example problems,
' ~ presented as Case Studies, begin with a statement of the problem. This is
1

L

75

--------- ------- -------

76 CHAPTER 1 Introduction to Computers, Problem Solving, and Programming

followed by an analysis, where we identify the data requirements for the
problem: the problem inputs and the desired outputs. Next, we formulate
the design of the initial algorithm and then we refine it. Finally, we implement
the algorithm as a C++ program. We also provide a sample run of the pro­
gram and discuss how to test the program.

Now let's walk through a sample case study. This example includes a
running commentary on the process, which you can use as a model in solv­
ing other problems.

c-~e- ~tu..-d'/ Converting "''""'-'

PROBLEM

Your summer Lnternship has you working with a surveyor. Part of your job ·
is to study some maps that give distances in kilometers and some that use
miles. The surveyor prefers to deal in metric measurements. Write a pro­
gram that performs the necessary conversion.

ANALYSIS

The first step in solving this problem is to determine what you are asked to
do. You must convert from one system of measurement to another, but are
you supposed to convert from kilometers to miles, or vice versa? The prob­
lem states that you prefer to deal in metric measurements, so you must
convert distance measurements in miles to kilometers. Therefore, the
problem input is distance in miles and the problem output is distance in
kilometers. To write the program, you need to know the relationship
between miles and kilometers. Consulting a metric table shows that one
mile equals 1.609 kilometers.

The data requirements and relevant formulas are listed below. The
memory cell that will contain the problem input is identified by miles, and
kms identifies the memory cell that will contain the program result, or the
problem output.

DATA REQUIREMENTS

Problem Input

miles the distance in miles

Problem Output

kms the distance in kilometers

Relevant Formula

1 mile = 1.609 kilometers

1.6 Applying the Software Development Method

DESIGN

The next step is to formulate the algorithm that solves the problem. Begin by
listing the three major steps, or subproblems, of the algorithm.

ALGORITHM

1. Get the distance in miles.

2. Convert the distance to kilometers.

3. Display the distance in kilometers.

Now decide whether any steps of the algorithm need further refinement or
whether they are perfectly clear as stated. Step 1 (getting the data) and Step 3
(displaying a value) are basic steps and require no further refinement. Step 2
is fairly straightforward, but some detail might help:

Step 2 Refinement

2.1 The distance in kilometers is 1.609 times the distance in miles.

We list the complete algorithm with refinements below to show you
how it all fits together. The refinement of Step 2 is numbered as Step 2.1 and
is indented under Step 2.

ALGORITHM WITH REFINEMENTS

1. Get the distance in miles.

2. Convert the distance to kilometers.

2.1 The distance in kilometers is 1.609 times the distance in miles.

3. Display the distance in kilometers.

Let's desk check the algorithm before going further. If Step 1 gets a distance
of 10.0 miles, Step 2.1 would convert it to 1.609 x 10.00 or 16.09 kilometers.
This correct result would be displayed by Step 3.

IMPLEMENTATION

To implement the solution, you must write the algorithm as a C++ program.
You would first tell the C++ compiler about the problem data requirements­
that is, what memory cell names you are using and what kind of data will be
stored in each memory cell. Next, convert each algorithm step into one or
more C++ statements. If an algorithm step has been refined, convert the
refinements, not the original step, into C++ statements.

Listing 1.2 shows the C++ program along with a sample execution. The
algorithm steps are in lines that begin with I I; the program statements
follow the algorithm steps. The sample execution is highlighted in the color
screen. The input data typed in by the program user are in color. Don't worry
about understanding the details of this program yet; we explain the program
in the next chapter.

77

78 CHAPTER 1 Introduction to Computers, Problem Solving, and Programming

TESTING

How do you know the sample n1nis correct? You should al}\'ays exarrtihe
program results carefully to make suretha.ttheynuike ~~rt§~,·m'tms,rllit _
a distance of 10.0 miles is convertedto 16.09 kilomefers,as.it sho.t.dd:"be.
To verify that the program works pi()perly, enter afew fi,.6r.e f~~'f&(lJues
of miles. You don't need to try more than(:l fe-w h~stcase~·f():":.\te#f}(Jh.at · ·
simple program like this is correct. ' ··. ;,

Listing 1.2 Converting miles to kilometers

II miles.cpp
II Converts distance in miles to kilometers.

#include <iostream>
using namespace std;

int main()
{

II start of main function

}

const float KM PER MILE
float miles,

kms;

1.609;

II Get the distance in miles.

II 1.609 km in a mile
II input: distance in miles
II output: distance in kilometers

cout << DEnter the distance in miles: u;
cin >> miles;

II Convert the distance to kilometers.
kms = km_per_mile * miles;

II Display the distance in kilometers.
cout << 0 The distance in kilometers is " << kms << endl;

return 0; //Exit the main function

Enter the distance in miles: 10.0
The distance in kilometers is 16.09

SES FOR SECTION 1.6

Self-Check

1. Change the algorithm for the metric conversion program to convert
distance in kilometers to miles.

2. List the data requirements, formulas, and algorithm for a program that
converts a volume from quarts to liters.

----·-·-·-·-- --

1.7 Professional Ethics for Computer Programmers 79

1.7 Professional Ethics for Computer Programmers

We end this introductory chapter with a discussion of professional ethics for
computer programmers. Like other professionals, computer programmers
and software system designers (called software engineers) need to follow
certain standards of professional conduct.

Privacy and Misuse of Data

As part of their jobs, programmers may have access to large data banks or
databases containing sensitive information on financial transactions or
personnel, or information that is classified as "secret" or "top secret."
Programmers should always behave in a socially responsible manner and
not retrieve information that they are not entitled to see. They should not
use information to which they are given access for their own personal
gain, or do anything that would be considered illegal, unethical, or harmful
to others. Just as doctors and lawyers must keep patient information
confidential, programmers must respect an individual's rights to privacy.

A programmer who changes information in .a database containing finan­
cial records for his or her own personal gain-for example, changes the
amount of money in a bank account-is guilty of computer theft or
computer fraud. This is. a felony that can lead to fines and imprisonment.

Computer Hacking

You may have heard about "computer hackers" who break into secure
data banks by using their own computer to call the computer that controls
access to the data bank. Classified or confidential information retrieved in
this way has been sold to intelligence agencies of other countries. Other
hackers have tried to break into computers to retrieve information for their
own amusement or as a prank, or just to demonstrate that they can do it.
Regardless of the intent, this activity is illegal, and the government will pros­
ecute anyone who does it. Your university probably addresses this kind of
activity in your student handbook. The punishment is likely similar to that
for other criminal activity, because that is exactly what it is.

Another illegal activity sometimes practiced by hackers is attaching
harmful code, called a virus, to another program so that the virus code
copies itself throughout a computer's disk memory. A virus can cause
sporadic activities to disrupt the operation of the host computer-for exam­
ple, unusual messages may appear on the screen at certain times-or cause
the host computer to erase portions of its own disk memory, destroying
valuable information and programs. Viruses are spread from one computer

computer theft
(computer fraud)
Illegally obtaining money
by falsifying information
in a computer database.

virus
Code attached to anoth­
er program that spreads
through a computer's
disk memory, disrupting
the computer or erasing
information.

80 CHAPTER 1 Introduction to Computers, Problem Solving, and Programming

worm
A virus that can disrupt
a network by replicating
itself on other network
computers.

software piracy
Violating copyright
agreements by illegally
copying software for use
in another computer.

to another in various ways-for example, if you copy a file that originated
on another computer that has a virus, or if you open an e-mail message that
is sent from an infected computer. A computer worm is a virus that can repli­
cate itself on other network computers, causing these computers to send
multiple messages over the network to disrupt its operation or shut it
down. Certainly, data theft and virus propagation should not be considered
harmless pranks; they are illegal and carry serious penalties.

Plagiarism and Software Piracy

Using someone else's programs without permission is also unprofessional
behavior. Although it is certainly permissible to use modules from libraries
that have been developed for reuse by their own company's programmers,
you cannot use another programmer's personal programs or programs
from another company without getting permission beforehand. Doing so
could lead to a lawsuit, with you or your company having to pay damages.

Modifying another student's code and submitting it as your own is a
fraudulent practice-specifically, plagiarism-and is no different than copy­
ing paragraphs of information from a book or journal article and calling it
your own. Most universities have severe penalties for plagiarism that may
include failing the course and/ or being dismissed from the university.
Be aware that even if you modify the code slightly or substitute your own
comments or different variable names, you are still guilty of plagiarism if
you are using another person's ideas and code. To avoid any question of
plagiarism, find out beforehand your instructor's rules about working with
others on a project. If group efforts are not allowed, make sure that you work
independently and submit only your own code.

Many commercial software packages are protected by copyright laws
against software piracy-the practice of illegally copying software for use
on another computer. If you violate this law, your company or university
can be fined heavily for allowing this activity to occur. Besides the fact
that software piracy is against the law, using software copied from another
computer increases the possibility that your computer will receive a virus.
For all these reasons, you should read the copyright restrictions on each
software package and adhere to them.

Misuse of a Computer Resource

Computer system access privileges or user account codes are private prop­
erty. These privileges are usually granted for a specific purpose-for exam­
ple, for work to be done in a particular course or for work to be done during
the time you are a student at your university. The privilege should be
protected; it should not be loaned to or shared with anyone else and should

Chapter Review

not be used for any purpose for which it was not intended. When you leave
the institution, this privilege is normally terminated and any accounts
associated with the privilege will be closed.

Computers, computer programs, data, and access (account) codes are
like any other property. If they belong to someone else and you are not
explicitly given permission to use them, then do not use them. If you are
granted a use privilege for a specific purpose, do not abuse the privilege or
it will be taken away.

Legal issues aside, it is important that we apply the same principles of
right and wrong to computerized property and access rights as to all other
property rights and privileges. If you are not sure about the propriety of some­
thing you want to do, ask first. As students and professionals in computing, we
set an example for others. If we set a bad example, others are sure to follow.

Self-Check

1. Some computer users will not open an e-mail message unless they know
the person who sent it. Why might someone adopt this policy?

2. Find out the penalty for plagiarism at your school.

3. Why is it a good policy to be selective about opening e-mail attachments?

4. Define the terms virus and worm.

Chapter Review

1. The basic components of a computer are main and secondary memory,
the CPU, and input and output devices.

2. Main memory is organized into individual storage locations called
memory cells.

• Each memory cell has a unique address.
• A memory cell is a collection of bytes; a byte is a collection of eight bits.
• A memory cell is never empty, but its initial contents may be mean­

ingless to your program.
• The current contents of a memory cell are destroyed whenever new

information is stored in that cell.
• Programs must be copied into the memory of the computer before

they can be executed.
• Data cannot be manipulated by the computer until they are first

stored in memory.

81

84 CHAPTER 1 Introduction to Computers, Problem Solving, and Programming

7. What processes are needed to transform a C++ program to a machine
language program that is ready for execution?

8. Explain the relationship between memory cells, bytes, and bits.

9. What is the difference between a command-line interface and a GUI?
Which are you using? Which kind is used on a PC?

10. Name three high-level languages and describe their main usage.

11. What are the differences between RAM and ROM? Which contains the
instructions that execute when you first boot your computer? Which
can be extended? Which contains information that does not disappear
when you tum your computer off?

12. What is the major reason for programming in an object-oriented language?

13. In the following problem statement, identify the problem inputs, problem
outputs, and some relevant formulas.

You are writing a program to help balance your checkbook. This program
displays the new balance in your account after you enter the starting
balance and a transaction. Each transaction has two data items: an indi­
cation of whether the transaction is a deposit or a withdrawal and the
dollar amount of the transaction.

Answers to Quick-Check Exercises
1. ·Compiler, high-level, machine, assembler, machine

2. false

3. translation, linking, loading, execution

4. source

5. compiler, source

6. object

7. executable

8. editor

9. less, smaller

10. problem specification, problem analysis, program design, program
implementation, program testing

11. main (a, b, f), secondary (c, d, e, g)

12. A class describes the properties of a category of objects whereas an
object is a specific instance of a class.

13. methods, data or attributes

14. sub, super

' t r
f;
t t
l'
~,

~
k

Bjarne Stroustrup
Bjarne Stroustrup is the designer of the C++ programming
language. He is currently the College of Engineering Chair in
Computer Science professor at Texas A&M University and an
AT&T Labs} Fellow. He is a memberoftheNational Academy
of Engineering} an ACM Fellow, andaniEEE Fellow. In 1993
Stroustrup won the ACM Grace Murray Hopper award for
his early work on C++, and in 1990 he was namedone of
America's twelve top young scientists by Fortune magazine.
Stroustrup has also authored several books, including The C++
Programming Language and The Design and Evolution of C++,
which are the definitive C++ reference books.

What is your educational" background?
Why did you decide to study computer
science?
I have a master's degree in mathemat­
ics with computer science from the
University of Arhus in Denmark and a
Ph.D. in computer science from
Cambridge University in England. I
liked math, but wanted something that
had a practical application. Thinking
about that led me to computers.

What was your first job in the computer
industry? What did it entail?
I first had a series of programming jobs
while I was studying in Arhus, which
helped me avoid serious study debts. I
programmed ledger [billing] systems
for small firms such as lumberyards,
accounting systems, payroll systems,
etc. Interestingly enough, this involved
my collaborating with both computer
salesmen and people running business­
es. (They knew their businesses, but
nothing about computers.)

In such collaboration, I designed a
system and modified it for better
usability. In addition, I did the com­
plete detailed design, implementation,
and documentation. That taught me a

lot-especially that a program is only a
part of a larger system and that people
directly depend on it.

My first full-time job was as a
researcher at AT&T Bell Labs. I experi­
mented with distributed systems and
eventually with programming and
progra:rnrrling languages as tools for
building systems.

What drove the development of C++?
Which specific issues were you trying
to address when you developed the
language?
I was working with some problems in
distributed systems and networking.
I needed a tool that would help me
to structure my programs well and
also allow me to write efficient code.
I designed C++ to give me the design
techniques of Simula and the low-level
flexibility and efficiency of C. The fur­
ther evolution of C++ has been dominat­
ed by the same aim of enabling code that
is simultaneously elegant and efficient.

What is a typical day like for you?
Usually the first thing I do when I get up
(at about 7 A.M.) and the last thing I do
before I go to bed (after 11 P.M.) is look at

my e-mail. In between, thlngs vary. I read
a bit go to a few talks, and write a lot­
both code and text. I avoid meetings
whenever I can. As a professor, I mitu­
rally lecture a couple of times a week dur­
ing term-time and see a lot of students.

I try to do something that has noth­
ing to do with wo:rk every day;! spend
time with my family, read a lot of litera­
ture and history, and run a few miles
when time and the weather allows it. .

Which person in the computer science ·
field has inspired you?
I have always had a deep respect for .
Kristen Nygaard. He is one of the design­
ers of Simula [the first progranuning .·
language to support object-oriented pro­
granuning, designed in the mid-1960s],
a. gentleman, and a thoroughly enjoyable
person to be with. Together with his
friend and colleague, Ole-Johan Dahl,
he received the 2002 Turing award.

Do you have any advice for students
learning C++?
Study systems and programming, not
just programming languages. A lan­
guage is a tool, so it should be studied
in the context of problems that deserve
to be solved. Studying a language in
isolation is sterile.

Start C++ with an up-to-date !SO­
standard-conforming implementation
and use standard library facilities, such
as strings, vectors, maps, and
iostreams, right from the beginning. Do
not fiddle with pointers, C-style strings,
and other low-level facilities until you
understand the basics of scope, func­
tions, looks, variables, etc. and until
you have a real need. Focus on con­
cepts and techniques. Learn program­
ming language features as needed to
express ideas. Don't think that a single
programming language is all you'll
ever need to know.

What advice do you have for students
entering the computer science field?
Don't just study computers. Learn
something that will give you an idea of
what to use computers for. Consider
making computer science a minor or ·
the major with some other interestirig
field as a minor. ·

.Study something just because it is
. hard and interesting at least once in.
your life; not everything has to be obvi­
ously useful or directly applicable to.
something specific.

How do you see C++ evolving over the
next few years?
In 2003, the standards committee
issued a set of minor corrections and
clarifications. That shows the dedica­
tion to stability and detail that is neces­
sary for a mature language. However,
no living language can remain
unchanged for more than a few years,
and a more significant revision of the
standard, called C ++Ox, is in progress.
The emphasis will be on providing a
larger and better standard library. The
changes to the core language will be
close to 100% compatible and focus on
providing better support for systems
programming and library building. You
can get an idea of some of the libraries
considered for the next standard by
looking at boost.org. These include
smart pointers, regular expressions,
threads, and file system access. The
language extensions currently under
consideration focus on better support
for generic programming and on
making the language (and standard
library) rules more regular and easier
to understand. The emphasis on per­
formance and suitability for systems
programming will be maintained. See
my home pages for more information
about C++Ox.

~{·.

82 CHAPTER 1 Introduction to Computers, Problem Solving, and Programming

3. Information in secondary memory is of two types: program files and
data files. Secondary memory stores information in semipermanent
form and is less expensive than main memory.

4. A computer cannot think for itself; a programming language is used to
instruct it in a precise and unambiguous manner to perform a task.

5. The three categories of programming languages are machine lan­
guage (meaningful to the computer), high-level language (meaningful to
the programmer), and assembly language, which is similar to machine
language except that it uses special mnemonic codes for operations and
names for memory cells instead of numeric addresses.

6. Several system programs are used to prepare a high-level language pro­
gram for execution. An editor enters a high-level language program into
memory. A compiler translates a high-level language program (the source
program) into machine language (the object program). The linker links this
object program to other object files, creating an executable program, and
the loader loads the executable program into memory. Sometimes these
steps are combined into an Integrated Development Environment (IDE).

7. Programming a computer can be fun, if you're patient, organized, and
careful. The software development method for solving problems using a
computer can be of considerable help in your programming work. We
emphasize five major steps in this problem-solving process:

• Problem specification
• Problem analysis
• Program design
• Program implementation
• Program testing

8. Through the operating system, you can issue commands to the comput­
er and manage files.

9. Follow ethical standards of conduct in everything you do pertaining to
computers. This means don't copy software that is copyright protected,
don't hack into someone else's computer, don't send files that may be
infected to others, and don't submit someone else's work as your own or
lend your work to another student.

Ou i ck -Check Exe rei ses
1. A may translate statements in language into

several statements in language while a statement in
_____ language usually is translated into one statement in
____ language.

2. After a program has been executed, all program results are automati­
cally displayed. True or false?

Chapter Review

3. Specify the correct order for these operations: execution, translation,
loading, linking.

4. A high-levellanguage program is saved on disk as a(n) ____ file.

5. The finds syntax errors in the file.

6. Before linking, a machine-language program is saved on disk as a(n)
file. ----

7. After linking, a machine-language program is saved on disk as a(n)
____ file.

8. The _____ program is used to create and save the source file.

9. Computers are becoming (more/less) expensive and (bigger/smaller)
in size.

10. List the five steps of the software development method that you should
use to write your programs.

11. Determine whether each characteristic below applies to main memory
or secondary memory.
a. Faster to access
b. Volatile
c. May be extended almost without limit
d. Less expensive
e. Used to store files
f. Central processor accesses it to obtain the next machine-language

instruction for execution
g. Provides semipermanent data storage

12. In object-oriented programming, explain the difference between the
terms class and object.

13. The ____ of an object operate on the ____ of the object.

14. In a class hierarchy, a _____ class inherits data and methods from
its class.

Review Questions
1. List at least three kinds of information stored in a computer.

2. List two functions of the CPU.

3. List two input devices, two output devices, and two secondary storage
devices.

4. A computer can think. True or false?

5. What programs are combined in an IDE?

6. Describe two advantages of programming in a high-level language
such as C++.

83

