
LR Parsing Techniques – 1 Compiler Design – © Muhammed Mudawwar

Bottom-Up Parsing
 Attempts to traverse a parse tree bottom up (post-order traversal)
 Reduces a sequence of tokens to the start symbol
 At each reduction step, the RHS of a production is replaced with LHS
 A reduction step corresponds to the reverse of a rightmost derivation
 Example: given the following grammar
 E → E + T | T
 T → T * F | F
 F → (E) | id

 A rightmost derivation for id + id * id is shown below:

 E ⇒rm E + T ⇒rm E + T * F ⇒rm E + T * id
 ⇒rm E + F * id ⇒rm E + id * id ⇒rm T + id * id
 ⇒rm F + id * id ⇒rm id + id * id

LR Parsing Techniques – 2 Compiler Design – © Muhammed Mudawwar

Handles
 If S ⇒+

rm α then α is called a right sentential form
 A handle of a right sentential form is:

A substring β that matches the RHS of a production A → β
 The reduction of β to A is a step along the reverse of a rightmost derivation

 If S ⇒+
rm γAw ⇒rm γβw , where w is a sequence of tokens then

 The substring β of γβw and the production A → β make the handle

 Consider the reduction of id + id * id to the start symbol E
 Sentential Form

id + id * id
F + id * id
T + id * id
E + id * id
E + F * id

Production
F → id
T → F
E → T
F → id
T → F

Sentential Form
E + T * id
E + T * F
E + T
E

Production
F → id
T → T * F
E → E + T

LR Parsing Techniques – 3 Compiler Design – © Muhammed Mudawwar

Stack Implementation of a Bottom-Up Parser
 A bottom-up parser uses an explicit stack in its implementation
 The main actions are shift and reduce

A bottom-up parser is also known as as shift-reduce parser

 Four operations are defined: shift, reduce, accept, and error
 Shift: parser shifts the next token on the parser stack
Reduce: parser reduces the RHS of a production to its LHS
 The handle always appears on top of the stack

Accept: parser announces a successful completion of parsing
 Error: parser discovers that a syntax error has occurred

 The parser operates by:
 Shifting tokens onto the stack
When a handle β is on top of stack, parser reduces β to LHS of production
 Parsing continues until an error is detected or input is reduced to start symbol

LR Parsing Techniques – 4 Compiler Design – © Muhammed Mudawwar

Example on Bottom-Up Parsing
 Consider the parsing of the input string id + id * id

$
$id
$F
$T
$E
$E +
$E + id
$E + F
$E + T
$E + T *
$E + T * id
$E + T * F
$E + T
$E

id + id * id $
+ id * id $
+ id * id $
+ id * id $
+ id * id $

id * id $
* id $
* id $
* id $

id $
$
$
$
$

shift
reduce F → id
reduce T → F
reduce E → T
shift
shift
reduce F → id
reduce T → F
shift
shift
reduce F → id
reduce T → T * F
reduce E → E + T
accept

Stack

Input

Action

E → E + T | T
T → T * F | F
F → (E) | id

We use $ to mark
the bottom of the
stack as well as
the end of input

LR Parsing Techniques – 5 Compiler Design – © Muhammed Mudawwar

LR Parsing
 To have an operational shift-reduce parser, we must determine:

Whether a handle appears on top of the stack
 The reducing production to be used
 The choice of actions to be made at each parsing step

 LR parsing provides a solution to the above problems
 Is a general and efficient method of shift-reduce parsing
 Is used in a number of automatic parser generators

 The LR(k) parsing technique was introduced by Knuth in 1965
 L is for Left-to-right scanning of input
 R corresponds to a Rightmost derivation done in reverse
 k is the number of lookahead symbols used to make parsing decisions

LR Parsing Techniques – 6 Compiler Design – © Muhammed Mudawwar

LR Parsing – cont'd
 LR parsing is attractive for a number of reasons …

 Is the most general deterministic parsing method known
 Can recognize virtually all programming language constructs
 Can be implemented very efficiently
 The class of LR grammars is a proper superset of the LL grammars
 Can detect a syntax error as soon as an erroneous token is encountered
A LR parser can be generated by a parser generating tool

 Four LR parsing techniques will be considered
 LR(0) : LR parsing with no lookahead token to make parsing decisions
 SLR(1) : Simple LR, with one token of lookahead
 LR(1) : Canonical LR, with one token of lookahead
 LALR(1) : Lookahead LR, with one token of lookahead

 LALR(1) is the preferable technique used by parser generators

LR Parsing Techniques – 7 Compiler Design – © Muhammed Mudawwar

LR Parsers
 An LR parser consists of …

Driver program
 Same driver is used for all LR parsers

 Parsing stack
Contains state information, where si is state i
 States are obtained from grammar analysis

 Parsing table, which has two parts
Action section: specifies the parser actions
Goto section: specifies the successor states

 The parser driver receives tokens from the scanner one at a time
 Parser uses top state and current token to lookup parsing table
 Different LR analysis techniques produce different tables

LR Parser
Driver

Scanner

next token

Parsing Table

 action goto P
ar

si
ng

 S
ta

ck

Output

s0

s1

sm

LR Parsing Techniques – 8 Compiler Design – © Muhammed Mudawwar

LR Parsing Table Example
 Consider the following grammar G1 …
 1: E → E + T 3: T → ID
 2: E → T 4: T → (E)

 The following parsing table is obtained after grammar analysis

S1 0
1
2
3
4
5
6
7
8

State + ID () $ E T
Action Goto

S2 G4 G3

S1 S2

S1 S2
S5 S8

G6 G3

G7

R3 R3 R3

R2 R2 R2

R1 R1 R1
R4 R4 R4

S5 A

Entries are labeled with …
Sn: Shift token and goto state n
 (call scanner for next token)
Rn: Reduce using production n
Gn: Goto state n (after reduce)
A: Accept parse
 (terminate successfully)
blank : Syntax error

LR Parsing Techniques – 9 Compiler Design – © Muhammed Mudawwar

LR Parsing Example

$
$ id
$ T
$ E
$ E +
$ E + (
$ E + (id
$ E + (T
$ E + (E
$ E + (E +
$ E + (E + id
$ E + (E + T
$ E + (E
$ E + (E)
$ E + T
$ E

S1
R3, G3
R2, G4
S5
S2
S1
R3, G3
R2, G6
S5
S1
R3, G7
R1, G6
S8
R4, G7
R1, G4
A

Stack

Input

Action

1: E → E + T
2: E → T
3: T → id
4: T → (E)

Symbols
 0

0 1
0 3
0 4
0 4 5
0 4 5 2
0 4 5 2 1
0 4 5 2 3
0 4 5 2 6
0 4 5 2 6 5
0 4 5 2 6 5 1
0 4 5 2 6 5 7
0 4 5 2 6
0 4 5 2 6 8
0 4 5 7
0 4

Grammar
symbols do not
appear on the
parsing stack

They are shown
here for clarity

id + (id + id) $
+ (id + id) $
+ (id + id) $
+ (id + id) $

(id + id) $
id + id) $

+ id) $
+ id) $
+ id) $

id) $
) $
) $
) $

$
$
$

LR Parsing Techniques – 10 Compiler Design – © Muhammed Mudawwar

LR Parser Driver
 Let s be the parser stack top state and t be the current input token
 If action[s,t] = shift n then

 Push state n on the stack
 Call scanner to obtain next token

 If action[s,t] = reduce A → X1 X2 ... Xm then
 Pop the top m states off the stack
 Let s' be the state now on top of the stack
 Push goto[s', A] on the stack (using the goto section of the parsing table)

 If action[s,t] = accept then return
 If action[s,t] = error then call error handling routine
 All LR parsers behave the same way

 The difference depends on how the parsing table is computed from a CFG

LR Parsing Techniques – 11 Compiler Design – © Muhammed Mudawwar

LR(0) Parser Generation – Items and States

 LR(0) grammars can be parsed looking only at the stack
 Making shift/reduce decisions without any lookahead token
 Based on the idea of an item or a configuration
 An LR(0) item consists of a production and a dot

 A → X1 . . . Xi • Xi+1 . . . Xn
 The dot symbol • may appear anywhere on the right-hand side

Marks how much of a production has already been seen
 X1 . . . Xi appear on top of the stack
 Xi+1 . . . Xn are still expected to appear

 An LR(0) state is a set of LR(0) items
 It is the set of all items that apply at a given point in parse

LR Parsing Techniques – 12 Compiler Design – © Muhammed Mudawwar

LR(0) Parser Generation – Initial State
 Consider the following grammar G1:
 1: E → E + T 3: T → ID
 2: E → T 4: T → (E)

 For LR parsing, grammars are augmented with a . . .
New start symbol S, and a
New start production 0: S → E $

 The input should be reduced to E followed by $
We indicate this by the item: S → • E $

 The initial state (numbered 0) will have the item: S → • E $
 An LR parser will start in state 0
 State 0 is initially pushed on top of parser stack

LR Parsing Techniques – 13 Compiler Design – © Muhammed Mudawwar

Identifying the Initial State
 Since the dot appears before E, an E is expected

 There are two productions of E: E → E + T and E → T
 Either E+T or T is expected
 The items: E → • E + T and E → • T are added to the initial state

 Since T can be expected and there are two productions for T
 Either ID or (E) can be expected
 The items: T → • ID and T → • (E) are added to the initial state

 The initial state (0) is identified by the following set of items
S → • E $
E → • E + T
E → • T
T → • ID
T → • (E) 0

LR Parsing Techniques – 14 Compiler Design – © Muhammed Mudawwar

Shift Actions
 In state 0, we can shift either an ID or a left parenthesis

 If we shift an ID, we shift the dot past the ID
We obtain a new item T → ID • and a new state (state 1)
 If we shift a left parenthesis, we obtain T → (• E)
 Since the dot appears before E, an E is expected
We add the items E → • E + T and E → • T
 Since the dot appears before T, we add T → • ID and T → • (E)
 The new set of items forms a new state (state 2)

 In State 2, we can also shift an ID or a left parenthesis as shown

(

S → • E $
E → • E + T
E → • T
T → • ID
T → • (E) 0

T → (• E)
E → • E + T
E → • T
T → • ID
T → • (E) 2

T → ID • 1

(

ID ID

LR Parsing Techniques – 15 Compiler Design – © Muhammed Mudawwar

Reduce and Goto Actions
 In state 1, the dot appears at the end of item T → ID •

 This means that ID appears on top of stack and can be reduced to T
When • appears at end of an item, the parser can perform a reduce action

 If ID is reduced to T, what is the next state of the parser?
 ID is popped from the stack; Previous state appears on top of stack
 T is pushed on the stack
A new item E → T • and a new state (state 3) are obtained
 If top of stack is state 0 and we push a T, we go to state 3
 Similarly, if top of stack is state 2 and we push a T, we go also to state 3

(

S → • E $
E → • E + T
E → • T
T → • ID
T → • (E) 0

T → (• E)
E → • E + T
E → • T
T → • ID
T → • (E) 2 T → ID • 1

(

E → T • 3 T

ID

T

ID

LR Parsing Techniques – 16 Compiler Design – © Muhammed Mudawwar

DFA of LR(0) States
 We complete the state diagram to obtain the DFA of LR(0) states
 In state 4, if next token is $, the parser accepts (successful parse)

ID

T
Accept

E

S → • E $
E → • E + T
E → • T
T → • ID
T → • (E) 0

T → (• E)
E → • E + T
E → • T
T → • ID
T → • (E) 2 T → ID • 1

(

E → T • 3 T

ID

T

ID

(

T → (E •)
E → E • + T 6

T → (E) • 8

)

E → E + • T
T → • ID
T → • (E) 5

E → E + T • 7

+ S → E • $
E → E • + T 4

E

$

+

(

LR Parsing Techniques – 17 Compiler Design – © Muhammed Mudawwar

LR(0) Parsing Table
 The LR(0) parsing table is obtained from the LR(0) state diagram
 The rows of the parsing table correspond to the LR(0) states
 The columns correspond to tokens and non-terminals
 For each state transition i → j caused by a token x …

 Put Shift j at position [i, x] of the table

 For each transition i → j caused by a nonterminal A …
 Put Goto j at position [i, A] of the table

 For each state containing an item A → α • of rule n …
 Put Reduce n at position [i, y] for every token y

 For each transition i → Accept …
 Put Accept at position [i, $] of the table

LR Parsing Techniques – 18 Compiler Design – © Muhammed Mudawwar

LR(0) Parsing Table – cont'd
 The LR(0) table of grammar G1 is shown below

 For a shift, the token to be shifted determines the next state
 For a reduce, the state on top of stack specifies the production to be used

S1 0
1
2
3
4
5
6
7
8

State + ID () $ E T
Action Goto

S2 G4 G3

S1 S2

S1 S2
S5 S8

G6 G3

G7

R3 R3 R3

R2 R2 R2

R1 R1 R1
R4 R4 R4

S5 A

R3 R3

R2 R2

R1 R1
R4 R4

Entries are labeled with …
Sn: Shift token and goto state n
 (call scanner for next token)
Rn: Reduce using production n
Gn: Goto state n (after reduce)
A: Accept parse
 (terminate successfully)
blank : Syntax error

LR Parsing Techniques – 19 Compiler Design – © Muhammed Mudawwar

Accept $

S S S

(

S' → S • $ 1

S' → • S $
S → • (S) S
S → • 0

S → (• S) S
S → • (S) S
S → • 2

(

S → (S •) S 3

S → (S) • S
S → • (S) S
S → • 4

(

S → (S) S • 5

)

Limitations of the LR(0) Parsing Method
 Consider grammar G2 for matched parentheses

 0: S' → S $ 1: S → (S) S 2: S → ε

 The LR(0) DFA of grammar G2 is shown below

 In states: 0, 2, and 4, parser can shift (and reduce ε to S

LR Parsing Techniques – 20 Compiler Design – © Muhammed Mudawwar

Conflicts
 In state 0 parser encounters a conflict ...

 It can shift state 2 on stack when next token is (

 It can reduce production 2: S → ε

 This is a called a shift-reduce conflict

 This conflict also appears in states 2 and 4

 Two kinds of conflicts may arise
 Shift-reduce and reduce-reduce

Shift-reduce conflict
 Parser can shift and can reduce

Reduce-reduce conflict
 Two (or more) productions can be reduced

(

S' → • S $
S → • (S) S
S → • 0

2

Action Goto

0
1
2
3

State () $ S
S2,R2 G1

G3
A

S4
4
5

R2 R2

S2,R2 R2 R2

G5 S2,R2 R2 R2
R1 R1 R1

LR Parsing Techniques – 21 Compiler Design – © Muhammed Mudawwar

LR(0) Grammars
 The shift-reduce conflict in state 0 indicates that G2 is not LR(0)

 A grammar is LR(0) if and only if each state is either …
A shift state, containing only shift items

A reduce state, containing only a single reduce item

 If a state contains A → α ● x γ then it cannot contain B → β ●
Otherwise, parser can shift x and reduce B → β ● (shift-reduce conflict)

 If a state contains A → α ● then it cannot contain B → β ●
Otherwise, parser can reduce A → α ● and B → β ● (reduce-reduce conflict)

 LR(0) lacks the power to parse programming language grammars
 Because they do not use the lookahead token in making parsing decisions

LR Parsing Techniques – 22 Compiler Design – © Muhammed Mudawwar

SLR(1) Parsing
 SLR(1), or simple LR(1), improves LR(0) by …

Making use of the lookahead token to eliminate conflicts

 SLR(1) works as follows …
 It uses the same DFA obtained by the LR(0) parsing method
 It puts reduce actions only where indicated by the FOLLOW set

 To reduce α to A in A → α ● we must ensure that …
Next token may follow A (belongs to FOLLOW(A))

 We should not reduce A → α ● when next token ∉ FOLLOW(A)
 In grammar G2 …

 0: S' → S $ 1: S → (S) S 2: S → ε
 FOLLOW(S) = {$,)}
 Productions 1 and 2 are reduced when next token is $ or) only

LR Parsing Techniques – 23 Compiler Design – © Muhammed Mudawwar

SLR(1) Parsing Table
 The SLR(1) parsing table of grammar G2 is shown below

 The shift-reduce conflicts are now eliminated
 The R2 action is removed from [0, (], [2, (], and [4, (]

 Because (does not follow S

 S2 remains under [0, (], [2, (], and [4, (]

 R1 action is also removed from [5, (]

 Grammar G2 is SLR(1)
No conflicts in parsing table

 R1 and R2 for) and $ only

 Follow set indicates when to reduce

Action Goto

0
1
2
3

State () $ S
S2 G1

G3
A

S4
4
5

R2 R2

S2 R2 R2

G5 S2 R2 R2
R1 R1

LR Parsing Techniques – 24 Compiler Design – © Muhammed Mudawwar

SLR(1) Grammars
 SLR(1) parsing increases the power of LR(0) significantly

 Lookahead token is used to make parsing decisions
 Reduce action is applied more selectively according to FOLLOW set

 A grammar is SLR(1) if two conditions are met in every state …
 If A → α ● x γ and B → β ● then token x ∉ FOLLOW(B)
 If A → α ● and B → β ● then FOLLOW(A) ∩ FOLLOW(B) = ∅

 Violation of first condition results in shift-reduce conflict
 A → α ● x γ and B → β ● and x ∈ FOLLOW(B) then …
 Parser can shift x and reduce B → β

 Violation of second condition results in reduce-reduce conflict
 A → α ● and B → β ● and x ∈ FOLLOW(A) ∩ FOLLOW(B)
 Parser can reduce A → α and B → β

 SLR(1) grammars are a superset of LR(0) grammars

LR Parsing Techniques – 25 Compiler Design – © Muhammed Mudawwar

Limits of the SLR(1) Parsing Method
 Consider the following grammar G3 …
 0: S' → S $ 1: S → id 2: S → V := E 3: V → id 4: E → V 5: E → n

 The initial state consists of 4 items as shown below
When id is shifted in state 0, we obtain 2 items: S → id • and V → id •

 FOLLOW(S) = {$} and FOLLOW(V) = {:= , $}
 Reduce-reduce conflict in state 1 when lookahead token is $

 Therefore, grammar G3 is not SLR(1)
 The reduce-reduce conflict is caused by the weakness of SLR(1) method
 V → id should be reduced only when lookahead token is := (but not $)

S → id •
V → id • 1

id S' → • S $
S → • id
S → • V := E
V → • id 0

LR Parsing Techniques – 26 Compiler Design – © Muhammed Mudawwar

General LR(1) Parsing – Items and States
 Even more powerful than SLR(1) is the LR(1) parsing method
 LR(1) generalizes LR(0) by including a lookahead token in items
 An LR(1) item consists of …

Grammar production rule
Right-hand position represented by the dot, and
 Lookahead token

 A → X1 . . . Xi • Xi+1 . . . Xn , l where l is a lookahead token
 The • represents how much of the right-hand side has been seen

 X1 . . . Xi appear on top of the stack
 Xi+1 . . . Xn are expected to appear

 The lookahead token l is expected after X1 . . . Xn appear on stack
 An LR(1) state is a set of LR(1) items

LR Parsing Techniques – 27 Compiler Design – © Muhammed Mudawwar

LR(1) Parser Generation – Initial State
 Consider again grammar G3 …
 0: S' → S $ 1: S → id 2: S → V := E 3: V → id 4: E → V 5: E → n

 The initial state contains the LR(1) item: S' → • S , $
 S' → • S , $ means that S is expected and to be followed by $

 The closure of (S' → • S , $) produces the initial state items
 Since the dot appears before S, an S is expected
 There are two productions of S: S → id and S → V := E

 The LR(1) items (S → • id , $) and (S → • V := E , $) are obtained
 The lookahead token is $ (end-of-file token)

 Since the • appears before V in (S → • V := E , $), a V is expected

 The LR(1) item (V → • id , :=) is obtained
 The lookahead token is := because it appears after V in (S → • V := E , $)

LR Parsing Techniques – 28 Compiler Design – © Muhammed Mudawwar

Shift Action
 The initial state (state 0) consists of 4 items
 In state 0, we can shift an id

 The token id can be shifted in two items
When shifting id, we shift the dot past the id
We obtain (S → id • , $) and (V → id • , :=)
 The two LR(1) items form a new state (state 1)
 The two items are reduce items
No additional item can be added to state 1

S' → • S , $
S → • id , $
S → • V := E , $
V → • id , := 0

S' → • S , $
S → • id , $
S → • V := E , $
V → • id , := 0

id S → id • , $
V → id • , := 1

LR Parsing Techniques – 29 Compiler Design – © Muhammed Mudawwar

Reduce and Goto Actions
 In state 1, • appears at end of (S → id • , $) and (V → id • , :=)

 This means that id appears on top of stack and can be reduced
 Two productions can be reduced: S → id and V → id

 The lookahead token eliminates the conflict of the reduce items
 If lookahead token is $ then id is reduced to S
 If lookahead token is := then id is reduced to V

 When in state 0 after a reduce action …
 If S is pushed, we obtain item (S' → S • , $) and go to state 2
 If V is pushed, we obtain item (S → V • := E , $) and go to state 3

Accept
$

S' → • S , $
S → • id , $
S → • V := E , $
V → • id , := 0 V

id

S → V • := E , $ 3

S → id • , $
V → id • , := 1

S' → S • , $ 2 S

LR Parsing Techniques – 30 Compiler Design – © Muhammed Mudawwar

LR(1) State Diagram
 The LR(1) state diagram of grammar G3 is shown below
 Grammar G3, which was not SLR(1), is now LR(1)
 The reduce-reduce conflict that existed in state 1 is now removed
 The lookahead token in LR(1) items eliminated the conflict

:=

Accept
$

S' → • S , $
S → • id , $
S → • V := E , $
V → • id , := 0 V

id

S → V • := E , $ 3

S → id • , $
V → id • , := 1

S

S → V := E • , $ 5

S' → S • , $ 2 S → V := • E , $
E → • V , $
E → • n , $
V → • id , $ 4

E → V • , $ 6

E → n • , $ 7

V → id • , $ 8 id

n

V

E

LR Parsing Techniques – 31 Compiler Design – © Muhammed Mudawwar

LR(1) Grammars
 A grammar is LR(1) if the following two conditions are met …

 If a state contains (A → α ● x γ, a) and (B → β ●, b) then b ≠ x

 If a state contains (A → α ●, a) and (B → β ●, b) then a ≠ b

 Violation of first condition results in a shift-reduce conflict

 If a state contains (A → α ● x γ, a) and (B → β ●, x) then …
 It can shift x and can reduce B → β when lookahead token is x

 Violation of second condition results in reduce-reduce conflict

 If a state contains (A → α ●, a) and (B → β ●, a) then …
 It can reduce A → α and B → β when lookahead token is a

 LR(1) grammars are a superset of SLR(1) grammars

LR Parsing Techniques – 32 Compiler Design – © Muhammed Mudawwar

Drawback of LR(1)
 LR(1) can generate very large parsing tables
 For a typical programming language grammar …

 The number of states is around several hundred for LR(0) and SLR(1)
 The number of states can be several thousand for LR(1)

 This is why parser generators do not adopt the general LR(1)
 Consider again grammar G2 for matched parentheses

 0: S' → S $ 1: S → (S) S 2: S → ε

 The LR(1) DFA has 10 states, while the LR(0) DFA has 6

LR Parsing Techniques – 33 Compiler Design – © Muhammed Mudawwar

LR(1) DFA of Grammar G2

) $

S S

Accept

(

1

0 2

S → (S •) S $
3

S → (• S) S $
S → • (S) S)
S → •)

S

S → (S) • S $
S → • (S) S $
S → • $

S → (S) S • $

4

5

)

S

6

S → (S •) S)
7

S
S → (S) S •)

8

9

(

((
S → (S) • S)
S → • (S) S)
S → •)

S → (• S) S)
S → • (S) S)
S → •)

S' → • S $
S → • (S) S $
S → • $

S' → S • $

(

LR Parsing Techniques – 34 Compiler Design – © Muhammed Mudawwar

LALR(1) : Look-Ahead LR(1)
 Preferred parsing technique in many parser generators
 Close in power to LR(1), but with less number of states
 Increased number of states in LR(1) is because

Different lookahead tokens are associated with same LR(0) items

 Number of states in LALR(1) = states in LR(0)
 LALR(1) is based on the observation that

 Some LR(1) states have same LR(0) items
Differ only in lookahead tokens

 LALR(1) can be obtained from LR(1) by
Merging LR(1) states that have same LR(0) items
Obtaining the union of the LR(1) lookahead tokens

LR Parsing Techniques – 35 Compiler Design – © Muhammed Mudawwar

LALR(1) DFA of Grammar G2

S

Accept
$

S S

(

1

0 2

3

S → (• S) S $)
S → • (S) S)
S → •)

4

5

(

S' → • S $
S → • (S) S $
S → • $

S' → S • $

S → (S) • S $)
S → • (S) S $)
S → • $)

Accept S → (S •) S $) Accept S → (S) S • $)

)

(

(

	Bottom-Up Parsing
	Handles
	Stack Implementation of a Bottom-Up Parser
	Example on Bottom-Up Parsing
	LR Parsing
	LR Parsing – cont'd
	LR Parsers
	LR Parsing Table Example
	LR Parsing Example
	LR Parser Driver
	LR(0) Parser Generation – Items and States
	LR(0) Parser Generation – Initial State
	Identifying the Initial State
	Shift Actions
	Reduce and Goto Actions
	DFA of LR(0) States
	LR(0) Parsing Table
	LR(0) Parsing Table – cont'd
	Limitations of the LR(0) Parsing Method
	Conflicts
	LR(0) Grammars
	SLR(1) Parsing
	SLR(1) Parsing Table
	SLR(1) Grammars
	Limits of the SLR(1) Parsing Method
	General LR(1) Parsing – Items and States
	LR(1) Parser Generation – Initial State
	Shift Action
	Reduce and Goto Actions
	LR(1) State Diagram
	LR(1) Grammars
	Drawback of LR(1)
	LR(1) DFA of Grammar G2
	LALR(1) : Look-Ahead LR(1)
	LALR(1) DFA of Grammar G2

