Bottom-Up Parsing

< Attempts to traverse a parse tree bottom up (post-order traversal)
Reduces a sequence of tokens to the start symbol

At each reduction step, the RHS of a production is replaced with LHS
A reduction step corresponds to the reverse of a rightmost derivation
Example: given the following grammar

E —> E+T|T
T > T*F|F
F > (E)]id

>

>

o
*%
o
*%

o
*%

>

o
*%

>

A rightmost derivation for id + id * id is shown below:

E = . ,E+T=_ ,E+T*F=_E+T*id
>mE+F*id= E+id*id= T+id*id
=, F+id*id=_id+id *id

LR Parsing Techniques — 1 Compiler Design — © Muhammed Mudawwar

Handles

<+ IfS=*_ athen a is called a right sentential form

< A handle of a right sentential form is:
* A substring B that matches the RHS of a production A — 3
* The reduction of 3 to A is a step along the reverse of a rightmost derivation

<+ IfS=*_ yYAw = __yBw , where w Is a sequence of tokens then
* The substring of yBw and the production A — [3 make the handle

< Consider the reduction of id + i1d * i1d to the start symbol E

Sentential Form Production Sentential Form Production
id+1id*id F - id E+T*id F—id
F+id*id T > F E+T*F To>T*F
T+1d*id E > T E+T E->E+T
E+id*id F - id E

E+F*id T - F

LR Parsing Techniques — 2 Compiler Design — © Muhammed Mudawwar

Stack Implementation of a Bottom-Up Parser

< A bottom-up parser uses an explicit stack in its implementation

< The main actions are shift and reduce
#* A bottom-up parser is also known as as shift-reduce parser

< Four operations are defined: shift, reduce, accept, and error
#* Shift: parser shifts the next token on the parser stack

#* Reduce: parser reduces the RHS of a production to its LHS
<> The handle always appears on top of the stack

#* Accept: parser announces a successful completion of parsing
#* Error: parser discovers that a syntax error has occurred

< The parser operates by:
#* Shifting tokens onto the stack
* \When a handle B is on top of stack, parser reduces 3 to LHS of production
#* Parsing continues until an error is detected or input is reduced to start symbol

LR Parsing Techniques — 3 Compiler Design — © Muhammed Mudawwar

Example on Bottom-Up Parsing

< Consider the parsing of the input string id + id * id

Stack Input Action

$ id+id*id$ shift

$id +id*id$ reduce F — id E > E+T|T
$F +id*id $ reduce T > F T > T*F|F
$T +id*id$ reduce E > T F > (E)|id
$E +id*id $ shift

$E + id*id$ shift

$E +id *id$ reduce F — id

$E + F *id$ reduce T - F We use $ to mark
:E : ; . - :g : 22:2 the bottom of the
$E+T*id $ reduce F — id stack as WG.)“ s
$E+T*F $ reduce T > T*F the end of input
$E+T $ reduce E > E+T

$E $ accept

LR Parsing Techniques — 4 Compiler Design — © Muhammed Mudawwar

LR Parsing

< To have an operational shift-reduce parser, we must determine:
» \Whether a handle appears on top of the stack
»* The reducing production to be used
#* The choice of actions to be made at each parsing step

< LR parsing provides a solution to the above problems
* |s a general and efficient method of shift-reduce parsing
* |s used in a number of automatic parser generators

< The LR(K) parsing technique was introduced by Knuth in 1965
»* L is for Left-to-right scanning of input
#* R corresponds to a Rightmost derivation done in reverse
#* k is the number of lookahead symbols used to make parsing decisions

LR Parsing Techniques — 5 Compiler Design — © Muhammed Mudawwar

LR Parsing — cont'd

< LR parsing is attractive for a number of reasons ...
* |s the most general deterministic parsing method known
% Can recognize virtually all programming language constructs
#* Can be implemented very efficiently
#* The class of LR grammars is a proper superset of the LL grammars
» Can detect a syntax error as soon as an erroneous token is encountered
#* A LR parser can be generated by a parser generating tool

< Four LR parsing techniqgues will be considered
»* LR(0) : LR parsing with no lookahead token to make parsing decisions
» SLR(1) :Simple LR, with one token of lookahead
» LR(1) :Canonical LR, with one token of lookahead
»* LALR(1) : Lookahead LR, with one token of lookahead

< LALR(2) is the preferable technigue used by parser generators

LR Parsing Techniques — 6 Compiler Design — © Muhammed Mudawwar

LR Parsers

< An LR parser consists of ...

* Driver program Scanner
<- Same driver is used for all LR parsers | next token
* Parsing stack LR Parser > Output
i i i i - Driver —°m
<> Contains state information, where s; is state i S
A (U
<> States are obtained from grammar analysis o
: : Parsing Table 2
#* Parsing table, which has two parts J s, | &
. : g : ' S
< Action section: specifies the parser actions action | goto So | o

<> Goto section: specifies the successor states

< The parser driver receives tokens from the scanner one at a time
< Parser uses top state and current token to lookup parsing table
< Different LR analysis technigues produce different tables

LR Parsing Techniques — 7 Compiler Design — © Muhammed Mudawwar

LR Parsing Table Example

< Consider the following grammar G; ...

1: E - E+T 3: T —» ID
2. E > T 4: T —» (E)

< The following parsing table Is obtained after grammar analysis

State " T 1D ACt(ion T8 EGOtOT Entries_ are labeled with ...

0 31 | 52 Ga | g3 | | Sh: Shift token and goto state n
1 | R3 R3 | R3 (call scanner for next token)
2 S1 | S2 G6 | G3 | | Rn:Reduce using production n
3 | R2 R2 | R2 Gn:Goto state n (after reduce)
115 A A: Accept parse
5 S1| s2 G7 _
6 | S5 S8 (terminate successfully)
7 | R1 R1 | R1 blank : Syntax error
8 R4 R4 | R4

LR Parsing Techniques — 8

Compiler Design — © Muhammed Mudawwar

LR Parsing Example

Stack Symbols Input Action

0 $ id+ (id+id)$ S1

01 $ id +(id+id) $ R3, G3 .

03 $T +(id+id)$ R2, G4 LE - E+T
04 $E +(id+id)$ S5 2B —> T
045 $E+ (id+id) $ S2 33T —» id
0452 $E+(id+id) $ S1 4. T > (E)
04521 $E+(id +id) $ R3, G3

04523 SE+(T +id)$ R2, G6

04526 $E+(E +id) $ S5 Grammar
045265 $E+(E+ id) $ S1 Symb0|sdonot
i IE 3 BE | mewem
04526 $E+(E)$ sg parsing stack
045268 $E+(E) $ R4, G7 They are shown
0457 $E+T $ R1, G4 here for clarity
04 $E $ A

LR Parsing Techniques — 9

Compiler Design — © Muhammed Mudawwar

LR Parser Driver

L)

*

Let s be the parser stack top state and t be the current input token

If action[s,t] = shift n then
#* Push state n on the stack
#* Call scanner to obtain next token

If action[s,t] = reduce A — X, X, ... X, then
#* Pop the top m states off the stack
* Let s' be the state now on top of the stack
#* Push gotol[s', A] on the stack (using the goto section of the parsing table)

If action][s,t] = accept then return
If action]s,t] = error then call error handling routine

< All LR parsers behave the same way
#* The difference depends on how the parsing table is computed from a CFG

L)

L)

*

L)

*

TS
*

*

TS
*

*

LR Parsing Techniques — 10 Compiler Design — © Muhammed Mudawwar

LR(0) Parser Generation — Iltems and States

< LR(0) grammars can be parsed looking only at the stack

< Making shift/reduce decisions without any lookahead token
< Based on the idea of an item or a configuration

< An LR(0) item consists of a production and a dot

A — Xi...Xj®Xj1...Xp

< The dot symbol e may appear anywhere on the right-hand side
»* Marks how much of a production has already been seen
#* X1 ... X appear on top of the stack
#* Xi+1 ... Xpare still expected to appear

< An LR(0) state is a set of LR(0) items
* |t is the set of all items that apply at a given point in parse

LR Parsing Techniques — 11 Compiler Design — © Muhammed Mudawwar

LR(0) Parser Generation — Initial State

< Consider the following grammar G1.:
1LES>E+T 3:T—>ID
2:.E—>T 4:T—> (E)
< For LR parsing, grammars are augmented witha. . .

#» New start symbol S, and a
#» New start production 0:S—>ES

< The input should be reduced to E followed by $
#* We indicate this by the item: S —> ¢ E $

< The initial state (numbered 0) will have the item:S —> e E $

< An LR parser will start in state O
< State 0 is Initially pushed on top of parser stack

LR Parsing Techniques — 12 Compiler Design — © Muhammed Mudawwar

ldentifying the Initial State

< Since the dot appears before E, an E is expected
#* There are two productionsof E:E>E+TandE—>T
#* Either E+T or T Is expected
* Theitems:E—>eE+ T and E — e T are added to the initial state

< Since T can be expected and there are two productions for T
»* Either ID or (E) can be expected
#* Theitems: T —> e ID and T — e (E) are added to the initial state

< The Initial state (0) is identified by the following set of items

(S 5 eES$)
E - eE+T

E —> T

T — eID

T > «(5) O

LR Parsing Techniques — 13 Compiler Design — © Muhammed Mudawwar

Shift Actions

< In state 0, we can shift either an ID or a left parenthesis
»* |f we shift an 1D, we shift the dot past the ID
#* \We obtain a new item T — ID e and a new state (state 1)
»* |f we shift a left parenthesis, we obtain T — (e E)
#* Since the dot appears before E, an E is expected
»* WeaddtheitemsE —>eE+T and E—> e T
»* Since the dot appears before T,weadd T —> e ID and T—> e (E)
#* The new set of items forms a new state (state 2)

< In State 2, we can also shift an ID or a left parenthesis as shown

(s & <ES) (T 5 (sE))

E > oE+T (M E > oE+T

E—> oT E—> oT (
T > eID _|Da[T_>|D,]‘,|D_T—>0ID

T > +(E) @/ ® T > +(E) @/

LR Parsing Techniques — 14 Compiler Design — © Muhammed Mudawwar

Reduce and Goto Actions

< In state 1, the dot appears at the end of item T — ID e
#* This means that 1D appears on top of stack and can be reduced to T
#* \When e appears at end of an item, the parser can perform a reduce action

< If ID is reduced to T, what is the next state of the parser?
#* ID is popped from the stack; Previous state appears on top of stack
#* T 1s pushed on the stack
#* A new item E — T e and a new state (state 3) are obtained
» |f top of stack is state 0 and we push a T, we go to state 3
»* Similarly, if top of stack is state 2 and we push a T, we go also to state 3

(S > eES$ _TA.[E—> Te @]“T (T 5 (eE))
E - eE+T E > eE+T

E > oT (» E > T (
T > eID T > eID

T > +(E) @/—lDa[T > IDe @]le T > +(E) @/

LR Parsing Techniques — 15 Compiler Design — © Muhammed Mudawwar

DFA of LR(0) States

< We complete the state diagram to obtain the DFA of LR(0) states
< In state 4, if next token is $, the parser accepts (successful parse)

(S & eES$ _TA.[E— Te @]“T—[T — (*E))
E - eE+T E > eE+T
E—> oT (s E > oT (
T - ID T - ID
\T—) e(E) @/—'D—{ T - ID“o @}*'D/—V\Ta e (E) @/
E ID /(E
S > Ee$ 4+ | E> EteT D
E—> Ee+T @ T - «ID E—> Ee+T @
T «o(E) (5
l$ VT V)
A t r \
cLep E—> E+Te (7) [T > (E)e]

LR Parsing Techniques — 16 Compiler Design — © Muhammed Mudawwar

LR(0) Parsing Table

< The LR(0) parsing table is obtained from the LR(0) state diagram
< The rows of the parsing table correspond to the LR(0) states
< The columns correspond to tokens and non-terminals

»
%

*

For each state transition 1 — j caused by a token x ...
#* Put Shift j at position [i, x] of the table

L)

*

For each transition i — j caused by a nonterminal A ...
#* Put Goto j at position [i, A] of the table

*

For each state containing an item A — a e of rulen ...
#* Put Reduce n at position [i, y] for every token y

L)

L)

*

For each transition 1 — Accept ...
#* Put Accept at position [i, $] of the table

L)

LR Parsing Techniques — 17 Compiler Design — © Muhammed Mudawwar

LR(0) Parsing Table — cont'd

< The LR(0) table of grammar G1 is shown below
»* For a shift, the token to be shifted determines the next state
#* For a reduce, the state on top of stack specifies the production to be used

Action Goto
ey T ([) [s|ET
0 S1 | S2 G4 | G3
1 R3I| R3| R3|R3|R3
2 S1 | S2 G6 | G3
3 R2 | R2| R2 | R2 | R2
4 S5 A
5 S1 | S2 G7
6 S5 S8
7 R1|R1|R1|R1|R1
8 R4 | R4 | R4 | R4 | R4

Entries are labeled with ...
Sn: Shift token and goto state n
(call scanner for next token)
Rn: Reduce using production n
Gn: Goto state n (after reduce)
A: Accept parse
(terminate successfully)
blank : Syntax error

LR Parsing Techniques — 18

Compiler Design — © Muhammed Mudawwar

Limitations of the LR(0) Parsing Method

< Consider grammar G2 for matched parentheses
0:S'—>S$ 1:S—>(S)S 2:S—>¢
< The LR(0) DFA of grammar G2 is shown below

< In states: 0, 2, and 4, parser can shift (and reduce € to S

D

BEEY: 1 (s> (eS)S (S 5 (S)eS |
S—>e(S)S —(— S—> e(S)S —(— S —> ¢(S)S
\S_). Y \S_). Y \S_). Y
IS IS) I
[S'—>s-$ @] [s—>(s-)s @] [s—>(3)s-@]

Accept l $

LR Parsing Techniques — 19 Compiler Design — © Muhammed Mudawwar

Conflicts

< In state O parser encounters a conflict ; \
_ _ S'—> S
* |t can shift state 2 on stack when next token is (S —>e(S)S
» |t can reduce production 2: S — ¢ S—> e
#* This is a called a shift-reduce conflict (l
* This conflict also appears in states 2 and 4 @
< Two kinds of conflicts may arise
_ Action Goto
* Shift-reduce and reduce-reduce state NEREE
. _ 0 |[S2R2|R2 | R2| G1
» Shift-reduce conflict 1 A
Parser can shift and can reduce 2 |S2R2|R2 | R2| G3
» Reduce-reduce conflict 3 >4
: 4 |S2,R2| R2 | R2| G5
Two (or more) productions can be reduced 5 R1 | RL | RL

LR Parsing Techniques — 20 Compiler Design — © Muhammed Mudawwar

LR(0) Grammars

< The shift-reduce conflict in state O indicates that G2 is not LR(0)

< A grammar is LR(0) if and only if each state is either ...
#* A shift state, containing only shift items

#* A reduce state, containing only a single reduce item

< If a state contains A — o @ Xy then it cannot contain B — 3 @

#* Otherwise, parser can shift x and reduce B — 3 @ (shift-reduce conflict)

< |If a state contains A — o e then it cannot containB — 3

#* Otherwise, parser can reduce A — o @ and B — 3 e (reduce-reduce conflict)

< LR(0) lacks the power to parse programming language grammars

#* Because they do not use the lookahead token in making parsing decisions

LR Parsing Techniques — 21 Compiler Design — © Muhammed Mudawwar

SLR(1) Parsing

< SLR(1), or simple LR(1), improves LR(0) by ...
»* Making use of the lookahead token to eliminate conflicts
< SLR(1) works as follows ...

* [t uses the same DFA obtained by the LR(0) parsing method
* |t puts reduce actions only where indicated by the FOLLOW set

< Toreduce o to Ain A — o @ we must ensure that ...
#» Next token may follow A (belongs to FOLLOW(A))

< We should not reduce A — o. @ when next token ¢ FOLLOW(A)

< In grammar G2 ...
*0:5>S$ 1:5S—>(S)S 2:S—>¢
»* FOLLOW(S) ={$,)}
»* Productions 1 and 2 are reduced when next token is $ or) only

LR Parsing Techniques — 22 Compiler Design — © Muhammed Mudawwar

SLR(1) Parsing Table

< The SLR(1) parsing table of grammar G2 is shown below

< The shift-reduce conflicts are now eliminated
#* The R2 action is removed from [0, (], [2, (], and [4, (]
#* Because (does not follow S
#* S2 remains under [0, (], [2, (], and [4, (]

#* R1 action is also removed from [5, (]

] S Action Goto
< Grammar G2 Is SLR(1) ae — Ty T s s
#* No conflicts in parsing table (1) S2 | R2 i\z Gl
* R1 and R2 for) and $ only 2 2 | R2 | R2| G3
#* Follow set indicates when to reduce 3 S4
4 S2 R2 | R2 | G5
5 R1 | R1

LR Parsing Techniques — 23 Compiler Design — © Muhammed Mudawwar

SLR(1) Grammars

< SLR(1) parsing increases the power of LR(0) significantly
#* Lookahead token is used to make parsing decisions
#* Reduce action is applied more selectively according to FOLLOW set

< A grammar is SLR(1) if two conditions are met in every state ...
*IfA— o exyand B — [3 e then token x ¢ FOLLOW(B)
*IfA— o eand B — 3 e then FOLLOW(A) n FOLLOW(B) = &

< Violation of first condition results in shift-reduce conflict
*A—>aexyand B — 3 eand x e FOLLOW(B) then ...
* Parser can shift x and reduce B —» 3

< Violation of second condition results in reduce-reduce conflict
*A—>oeandB — [eandx e FOLLOW(A) n FOLLOW(B)
* Parser can reduce A—>aand B — f

< SLR(1) grammars are a superset of LR(0) grammars

LR Parsing Techniques — 24 Compiler Design — © Muhammed Mudawwar

Limits of the SLR(1) Parsing Method

< Consider the following grammar G3 ...
0:S—>S%$ 1.S—»id 22S—>V:=E 3:V—oid 4E—>V 5 E—->n

< The initial state consists of 4 items as shown below

#* When id is shifted in state 0, we obtain 2 items: S > ideandV — id e
<+ FOLLOW(S) = {$} and FOLLOW(V) ={:=, $}
<+ Reduce-reduce conflict in state 1 when lookahead token is $

#* Therefore, grammar G3 is not SLR(1)
#* The reduce-reduce conflict is caused by the weakness of SLR(1) method
#* \V — id should be reduced only when lookahead token is := (but not $)

(S 5 oSS) id ‘s—nd-]
S > eid V > ide
S > eV :=E @

Vo eid (O

LR Parsing Techniques — 25 Compiler Design — © Muhammed Mudawwar

General LR(1) Parsing — Items and States

< Even more powerful than SLR(1) is the LR(1) parsing method
< LR(1) generalizes LR(0) by including a lookahead token in items

< An LR(1) item consists of ...
»* Grammar production rule
* Right-hand position represented by the dot, and
»* L_ookahead token

A—>X ... XeX,,...X, , | wherelisalookahead token
< The e represents how much of the right-hand side has been seen
#* X, ... X appear on top of the stack
#* Xi,, ... X, are expected to appear

< The lookahead token I is expected after X, ... X appear on stack
<+ An LR(1) state is a set of LR(1) items

LR Parsing Techniques — 26 Compiler Design — © Muhammed Mudawwar

LR(1) Parser Generation — Initial State

< Consider again grammar G3 ...
0:S—>S%$ 1.S—»id 22S—»>V:=E 3:V>id 4E—>V 5 E-—>n
< The initial state contains the LR(1) item:S' —> eS| $
*S'— oS $ means that S is expected and to be followed by $
< The closure of (S' — ¢ S, $) produces the initial state items
#* Since the dot appears before S, an S is expected
#* There are two productionsof S: S—idandS—»V:=E
#* The LR(1) items (S — e id, $) and (S— e V := E, $) are obtained
< The lookahead token is $ (end-of-file token)
#* Since the e appears before Vin (S— eV :=E, $),aV is expected
* The LR(1) item (V — e id, :=) is obtained
<> The lookahead token is := because it appears after Vin (S— eV :=E, $)

LR Parsing Techniques — 27 Compiler Design — © Muhammed Mudawwar

Shift Action

< The Initial state (state 0) consists of 4 items

< In state 0, we can shift an id (S 5 e5.$ A
#* The token id can be shifted in two items 2 e id.’_$
— oV:=E,$
* When shifting id, we shift the dot past the id Vo eid.:= (o)
\ 4

»* Weobtain(S—ide,$)and (V —>ide, =)
#* The two LR(1) items form a new state (state 1)
#* The two items are reduce items

» No additional item can be added to state 1

s N :
' S . $. S > ide,$

oid % _IdA’[V—>id0,:: @

eV =E. $

\ eid, = @/

< VW W!mwW
VAN

LR Parsing Techniques — 28 Compiler Design — © Muhammed Mudawwar

Reduce and Goto Actions

< Instate 1, e appearsatend of (S —ide ,$)and (V —>ide,:

#* This means that id appears on top of stack and can be reduced
* Two productions can be reduced: S > idand V — id

< The lookahead token eliminates the conflict of the reduce items
» |f lookahead token is $ then id is reduced to S
#* |f lookahead token is :=then id is reduced to V

< When in state O after a reduce action ...

* |f S is pushed, we obtain item (S' — S e , $) and go to state 2
* |f V is pushed, we obtain item (S — V e := E , $) and go to state 3

[S'—> Se.$ @]kS—/
IE

Accept

N

— 1d —

EERVAEEN

S' > S.%
S > eid,$
S > eV:=E,$
V - eid, =
©O)

(S & ide,$ |
\V::d:,:: @
'S - Vo::E,$@‘

LR Parsing Techniques — 29

Compiler Design — © Muhammed Mudawwar

LR(1) State Diagram

< The LR(1) state diagram of grammar G3 is shown below

< Grammar G3, which was not SLR(1), is now LR(1)

< The reduce-reduce conflict that existed in state 1 is now removed
< The lookahead token in LR(1) items eliminated the conflict

4 N\ (.))
S eS,% : S —> ide,$ S > V:=Ee,
S > eid,$ A=y S ide= (D) / ~ $®A
S —> oy::E,$ \
\V—>"d’-: @/ V_’\S%V°::E’$@A E/{E—>v-,$ @
VS p .V:: ~N V E $ @
oses O 320t Pt A
l$ E > en,$ /_ . ~
Accept Vo eid.$ @)\Idf V > ide,$ A

LR Parsing Techniques — 30 Compiler Design — © Muhammed Mudawwar

LR(1) Grammars

< A grammar is LR(1) if the following two conditions are met ...
» |If a state contains (A — a @ Xy, a) and (B — 3 e, b) then b # x
» | a state contains (A > o e,a)and (B > B e, b)thena#b

< Violation of first condition results in a shift-reduce conflict

» If a state contains (A —> o e Xy,a)and (B — 3 e, X) then ...

» |t can shift x and can reduce B — 3 when lookahead token is x
*» Violation of second condition results in reduce-reduce conflict

< If a state contains (A —> o e,a)and (B — [3 e, a) then ...

* |t can reduce A — o and B — 3 when lookahead token is a

< LR(1) grammars are a superset of SLR(1) grammars

LR Parsing Techniques — 31 Compiler Design — © Muhammed Mudawwar

Drawback of LR(1)

< LR(1) can generate very large parsing tables

< For a typical programming language grammar ...
#* The number of states is around several hundred for LR(0) and SLR(1)
»* The number of states can be several thousand for LR(1)

< This Is why parser generators do not adopt the general LR(1)
< Consider again grammar G2 for matched parentheses

0:S'—>S$ 1:5S—(S)S 2:S—>¢
< The LR(1) DFA has 10 states, while the LR(0) DFA has 6

LR Parsing Techniques — 32 Compiler Design — © Muhammed Mudawwar

LR(1) DFA of Grammar G2

(© ., @ \
S'—> eS $ S—>(eS)S |$
S > e(S)S |$—(—S—>e(S)S |)
(S $/ S))
©) 5 G ds
(S5 $| |S—(se)s |s
'8 @ D
Accept S—>(S)eS |$
S—>e(S)S |$
\S_). $/

(5) |'S
(s> (S)Se |8]

(S > (e5)S

- (— S —>e(S)S

S > e

(
(&) //";>

© 'S

'S > (Se)S

® V)

(S > (S)eS
S —>e(S)S
\S—)o

(9 S

[S-»(sgs-

LR Parsing Techniques — 33

Compiler Design — © Muhammed Mudawwar

LALR(L) : Look-Ahead LR(1)

< Preferred parsing technique in many parser generators
< Close in power to LR(1), but with less number of states

o
*

*

Increased number of states in LR(1) is because
»* Different lookahead tokens are associated with same LR(0) items

Number of states in LALR(1) = states in LR(0)

LALR(1) is based on the observation that
»* Some LR(1) states have same LR(0) items
» Differ only in lookahead tokens

LALR(1) can be obtained from LR(1) by

* Merging LR(1) states that have same LR(0) items
» Obtaining the union of the LR(1) lookahead tokens

*

*

*

LR Parsing Techniques — 34 Compiler Design — © Muhammed Mudawwar

LALR(1) DFA of Grammar G2

(0

(5> eS
S —>e(S)S
S > e

$
$
$

J

2

—(— S > ¢(S)S |[9$)

/(
(S 5 (S)eS $;;>

$)

At o
S—>(eS)S |$)

—(—{ S—>¢(S)S |)
\S—)o)) \S—)o
@ s 46
[S-»(s-)s $)

[S—»(S;So N

LR Parsing Techniques — 35

Compiler Design — © Muhammed Mudawwar

	Bottom-Up Parsing
	Handles
	Stack Implementation of a Bottom-Up Parser
	Example on Bottom-Up Parsing
	LR Parsing
	LR Parsing – cont'd
	LR Parsers
	LR Parsing Table Example
	LR Parsing Example
	LR Parser Driver
	LR(0) Parser Generation – Items and States
	LR(0) Parser Generation – Initial State
	Identifying the Initial State
	Shift Actions
	Reduce and Goto Actions
	DFA of LR(0) States
	LR(0) Parsing Table
	LR(0) Parsing Table – cont'd
	Limitations of the LR(0) Parsing Method
	Conflicts
	LR(0) Grammars
	SLR(1) Parsing
	SLR(1) Parsing Table
	SLR(1) Grammars
	Limits of the SLR(1) Parsing Method
	General LR(1) Parsing – Items and States
	LR(1) Parser Generation – Initial State
	Shift Action
	Reduce and Goto Actions
	LR(1) State Diagram
	LR(1) Grammars
	Drawback of LR(1)
	LR(1) DFA of Grammar G2
	LALR(1) : Look-Ahead LR(1)
	LALR(1) DFA of Grammar G2

