
LR Parsing Techniques – 1 Compiler Design – © Muhammed Mudawwar

Bottom-Up Parsing
 Attempts to traverse a parse tree bottom up (post-order traversal)
 Reduces a sequence of tokens to the start symbol
 At each reduction step, the RHS of a production is replaced with LHS
 A reduction step corresponds to the reverse of a rightmost derivation
 Example: given the following grammar
 E → E + T | T
 T → T * F | F
 F → (E) | id

 A rightmost derivation for id + id * id is shown below:

 E ⇒rm E + T ⇒rm E + T * F ⇒rm E + T * id
 ⇒rm E + F * id ⇒rm E + id * id ⇒rm T + id * id
 ⇒rm F + id * id ⇒rm id + id * id

LR Parsing Techniques – 2 Compiler Design – © Muhammed Mudawwar

Handles
 If S ⇒+

rm α then α is called a right sentential form
 A handle of a right sentential form is:

A substring β that matches the RHS of a production A → β
 The reduction of β to A is a step along the reverse of a rightmost derivation

 If S ⇒+
rm γAw ⇒rm γβw , where w is a sequence of tokens then

 The substring β of γβw and the production A → β make the handle

 Consider the reduction of id + id * id to the start symbol E
 Sentential Form

id + id * id
F + id * id
T + id * id
E + id * id
E + F * id

Production
F → id
T → F
E → T
F → id
T → F

Sentential Form
E + T * id
E + T * F
E + T
E

Production
F → id
T → T * F
E → E + T

LR Parsing Techniques – 3 Compiler Design – © Muhammed Mudawwar

Stack Implementation of a Bottom-Up Parser
 A bottom-up parser uses an explicit stack in its implementation
 The main actions are shift and reduce

A bottom-up parser is also known as as shift-reduce parser

 Four operations are defined: shift, reduce, accept, and error
 Shift: parser shifts the next token on the parser stack
Reduce: parser reduces the RHS of a production to its LHS
 The handle always appears on top of the stack

Accept: parser announces a successful completion of parsing
 Error: parser discovers that a syntax error has occurred

 The parser operates by:
 Shifting tokens onto the stack
When a handle β is on top of stack, parser reduces β to LHS of production
 Parsing continues until an error is detected or input is reduced to start symbol

LR Parsing Techniques – 4 Compiler Design – © Muhammed Mudawwar

Example on Bottom-Up Parsing
 Consider the parsing of the input string id + id * id

$
$id
$F
$T
$E
$E +
$E + id
$E + F
$E + T
$E + T *
$E + T * id
$E + T * F
$E + T
$E

id + id * id $
+ id * id $
+ id * id $
+ id * id $
+ id * id $

id * id $
* id $
* id $
* id $

id $
$
$
$
$

shift
reduce F → id
reduce T → F
reduce E → T
shift
shift
reduce F → id
reduce T → F
shift
shift
reduce F → id
reduce T → T * F
reduce E → E + T
accept

Stack

Input

Action

E → E + T | T
T → T * F | F
F → (E) | id

We use $ to mark
the bottom of the
stack as well as
the end of input

LR Parsing Techniques – 5 Compiler Design – © Muhammed Mudawwar

LR Parsing
 To have an operational shift-reduce parser, we must determine:

Whether a handle appears on top of the stack
 The reducing production to be used
 The choice of actions to be made at each parsing step

 LR parsing provides a solution to the above problems
 Is a general and efficient method of shift-reduce parsing
 Is used in a number of automatic parser generators

 The LR(k) parsing technique was introduced by Knuth in 1965
 L is for Left-to-right scanning of input
 R corresponds to a Rightmost derivation done in reverse
 k is the number of lookahead symbols used to make parsing decisions

LR Parsing Techniques – 6 Compiler Design – © Muhammed Mudawwar

LR Parsing – cont'd
 LR parsing is attractive for a number of reasons …

 Is the most general deterministic parsing method known
 Can recognize virtually all programming language constructs
 Can be implemented very efficiently
 The class of LR grammars is a proper superset of the LL grammars
 Can detect a syntax error as soon as an erroneous token is encountered
A LR parser can be generated by a parser generating tool

 Four LR parsing techniques will be considered
 LR(0) : LR parsing with no lookahead token to make parsing decisions
 SLR(1) : Simple LR, with one token of lookahead
 LR(1) : Canonical LR, with one token of lookahead
 LALR(1) : Lookahead LR, with one token of lookahead

 LALR(1) is the preferable technique used by parser generators

LR Parsing Techniques – 7 Compiler Design – © Muhammed Mudawwar

LR Parsers
 An LR parser consists of …

Driver program
 Same driver is used for all LR parsers

 Parsing stack
Contains state information, where si is state i
 States are obtained from grammar analysis

 Parsing table, which has two parts
Action section: specifies the parser actions
Goto section: specifies the successor states

 The parser driver receives tokens from the scanner one at a time
 Parser uses top state and current token to lookup parsing table
 Different LR analysis techniques produce different tables

LR Parser
Driver

Scanner

next token

Parsing Table

 action goto P
ar

si
ng

 S
ta

ck

Output

s0

s1

sm

LR Parsing Techniques – 8 Compiler Design – © Muhammed Mudawwar

LR Parsing Table Example
 Consider the following grammar G1 …
 1: E → E + T 3: T → ID
 2: E → T 4: T → (E)

 The following parsing table is obtained after grammar analysis

S1 0
1
2
3
4
5
6
7
8

State + ID () $ E T
Action Goto

S2 G4 G3

S1 S2

S1 S2
S5 S8

G6 G3

G7

R3 R3 R3

R2 R2 R2

R1 R1 R1
R4 R4 R4

S5 A

Entries are labeled with …
Sn: Shift token and goto state n
 (call scanner for next token)
Rn: Reduce using production n
Gn: Goto state n (after reduce)
A: Accept parse
 (terminate successfully)
blank : Syntax error

LR Parsing Techniques – 9 Compiler Design – © Muhammed Mudawwar

LR Parsing Example

$
$ id
$ T
$ E
$ E +
$ E + (
$ E + (id
$ E + (T
$ E + (E
$ E + (E +
$ E + (E + id
$ E + (E + T
$ E + (E
$ E + (E)
$ E + T
$ E

S1
R3, G3
R2, G4
S5
S2
S1
R3, G3
R2, G6
S5
S1
R3, G7
R1, G6
S8
R4, G7
R1, G4
A

Stack

Input

Action

1: E → E + T
2: E → T
3: T → id
4: T → (E)

Symbols
 0

0 1
0 3
0 4
0 4 5
0 4 5 2
0 4 5 2 1
0 4 5 2 3
0 4 5 2 6
0 4 5 2 6 5
0 4 5 2 6 5 1
0 4 5 2 6 5 7
0 4 5 2 6
0 4 5 2 6 8
0 4 5 7
0 4

Grammar
symbols do not
appear on the
parsing stack

They are shown
here for clarity

id + (id + id) $
+ (id + id) $
+ (id + id) $
+ (id + id) $

(id + id) $
id + id) $

+ id) $
+ id) $
+ id) $

id) $
) $
) $
) $

$
$
$

LR Parsing Techniques – 10 Compiler Design – © Muhammed Mudawwar

LR Parser Driver
 Let s be the parser stack top state and t be the current input token
 If action[s,t] = shift n then

 Push state n on the stack
 Call scanner to obtain next token

 If action[s,t] = reduce A → X1 X2 ... Xm then
 Pop the top m states off the stack
 Let s' be the state now on top of the stack
 Push goto[s', A] on the stack (using the goto section of the parsing table)

 If action[s,t] = accept then return
 If action[s,t] = error then call error handling routine
 All LR parsers behave the same way

 The difference depends on how the parsing table is computed from a CFG

LR Parsing Techniques – 11 Compiler Design – © Muhammed Mudawwar

LR(0) Parser Generation – Items and States

 LR(0) grammars can be parsed looking only at the stack
 Making shift/reduce decisions without any lookahead token
 Based on the idea of an item or a configuration
 An LR(0) item consists of a production and a dot

 A → X1 . . . Xi • Xi+1 . . . Xn
 The dot symbol • may appear anywhere on the right-hand side

Marks how much of a production has already been seen
 X1 . . . Xi appear on top of the stack
 Xi+1 . . . Xn are still expected to appear

 An LR(0) state is a set of LR(0) items
 It is the set of all items that apply at a given point in parse

LR Parsing Techniques – 12 Compiler Design – © Muhammed Mudawwar

LR(0) Parser Generation – Initial State
 Consider the following grammar G1:
 1: E → E + T 3: T → ID
 2: E → T 4: T → (E)

 For LR parsing, grammars are augmented with a . . .
New start symbol S, and a
New start production 0: S → E $

 The input should be reduced to E followed by $
We indicate this by the item: S → • E $

 The initial state (numbered 0) will have the item: S → • E $
 An LR parser will start in state 0
 State 0 is initially pushed on top of parser stack

LR Parsing Techniques – 13 Compiler Design – © Muhammed Mudawwar

Identifying the Initial State
 Since the dot appears before E, an E is expected

 There are two productions of E: E → E + T and E → T
 Either E+T or T is expected
 The items: E → • E + T and E → • T are added to the initial state

 Since T can be expected and there are two productions for T
 Either ID or (E) can be expected
 The items: T → • ID and T → • (E) are added to the initial state

 The initial state (0) is identified by the following set of items
S → • E $
E → • E + T
E → • T
T → • ID
T → • (E) 0

LR Parsing Techniques – 14 Compiler Design – © Muhammed Mudawwar

Shift Actions
 In state 0, we can shift either an ID or a left parenthesis

 If we shift an ID, we shift the dot past the ID
We obtain a new item T → ID • and a new state (state 1)
 If we shift a left parenthesis, we obtain T → (• E)
 Since the dot appears before E, an E is expected
We add the items E → • E + T and E → • T
 Since the dot appears before T, we add T → • ID and T → • (E)
 The new set of items forms a new state (state 2)

 In State 2, we can also shift an ID or a left parenthesis as shown

(

S → • E $
E → • E + T
E → • T
T → • ID
T → • (E) 0

T → (• E)
E → • E + T
E → • T
T → • ID
T → • (E) 2

T → ID • 1

(

ID ID

LR Parsing Techniques – 15 Compiler Design – © Muhammed Mudawwar

Reduce and Goto Actions
 In state 1, the dot appears at the end of item T → ID •

 This means that ID appears on top of stack and can be reduced to T
When • appears at end of an item, the parser can perform a reduce action

 If ID is reduced to T, what is the next state of the parser?
 ID is popped from the stack; Previous state appears on top of stack
 T is pushed on the stack
A new item E → T • and a new state (state 3) are obtained
 If top of stack is state 0 and we push a T, we go to state 3
 Similarly, if top of stack is state 2 and we push a T, we go also to state 3

(

S → • E $
E → • E + T
E → • T
T → • ID
T → • (E) 0

T → (• E)
E → • E + T
E → • T
T → • ID
T → • (E) 2 T → ID • 1

(

E → T • 3 T

ID

T

ID

LR Parsing Techniques – 16 Compiler Design – © Muhammed Mudawwar

DFA of LR(0) States
 We complete the state diagram to obtain the DFA of LR(0) states
 In state 4, if next token is $, the parser accepts (successful parse)

ID

T
Accept

E

S → • E $
E → • E + T
E → • T
T → • ID
T → • (E) 0

T → (• E)
E → • E + T
E → • T
T → • ID
T → • (E) 2 T → ID • 1

(

E → T • 3 T

ID

T

ID

(

T → (E •)
E → E • + T 6

T → (E) • 8

)

E → E + • T
T → • ID
T → • (E) 5

E → E + T • 7

+ S → E • $
E → E • + T 4

E

$

+

(

LR Parsing Techniques – 17 Compiler Design – © Muhammed Mudawwar

LR(0) Parsing Table
 The LR(0) parsing table is obtained from the LR(0) state diagram
 The rows of the parsing table correspond to the LR(0) states
 The columns correspond to tokens and non-terminals
 For each state transition i → j caused by a token x …

 Put Shift j at position [i, x] of the table

 For each transition i → j caused by a nonterminal A …
 Put Goto j at position [i, A] of the table

 For each state containing an item A → α • of rule n …
 Put Reduce n at position [i, y] for every token y

 For each transition i → Accept …
 Put Accept at position [i, $] of the table

LR Parsing Techniques – 18 Compiler Design – © Muhammed Mudawwar

LR(0) Parsing Table – cont'd
 The LR(0) table of grammar G1 is shown below

 For a shift, the token to be shifted determines the next state
 For a reduce, the state on top of stack specifies the production to be used

S1 0
1
2
3
4
5
6
7
8

State + ID () $ E T
Action Goto

S2 G4 G3

S1 S2

S1 S2
S5 S8

G6 G3

G7

R3 R3 R3

R2 R2 R2

R1 R1 R1
R4 R4 R4

S5 A

R3 R3

R2 R2

R1 R1
R4 R4

Entries are labeled with …
Sn: Shift token and goto state n
 (call scanner for next token)
Rn: Reduce using production n
Gn: Goto state n (after reduce)
A: Accept parse
 (terminate successfully)
blank : Syntax error

LR Parsing Techniques – 19 Compiler Design – © Muhammed Mudawwar

Accept $

S S S

(

S' → S • $ 1

S' → • S $
S → • (S) S
S → • 0

S → (• S) S
S → • (S) S
S → • 2

(

S → (S •) S 3

S → (S) • S
S → • (S) S
S → • 4

(

S → (S) S • 5

)

Limitations of the LR(0) Parsing Method
 Consider grammar G2 for matched parentheses

 0: S' → S $ 1: S → (S) S 2: S → ε

 The LR(0) DFA of grammar G2 is shown below

 In states: 0, 2, and 4, parser can shift (and reduce ε to S

LR Parsing Techniques – 20 Compiler Design – © Muhammed Mudawwar

Conflicts
 In state 0 parser encounters a conflict ...

 It can shift state 2 on stack when next token is (

 It can reduce production 2: S → ε

 This is a called a shift-reduce conflict

 This conflict also appears in states 2 and 4

 Two kinds of conflicts may arise
 Shift-reduce and reduce-reduce

Shift-reduce conflict
 Parser can shift and can reduce

Reduce-reduce conflict
 Two (or more) productions can be reduced

(

S' → • S $
S → • (S) S
S → • 0

2

Action Goto

0
1
2
3

State () $ S
S2,R2 G1

G3
A

S4
4
5

R2 R2

S2,R2 R2 R2

G5 S2,R2 R2 R2
R1 R1 R1

LR Parsing Techniques – 21 Compiler Design – © Muhammed Mudawwar

LR(0) Grammars
 The shift-reduce conflict in state 0 indicates that G2 is not LR(0)

 A grammar is LR(0) if and only if each state is either …
A shift state, containing only shift items

A reduce state, containing only a single reduce item

 If a state contains A → α ● x γ then it cannot contain B → β ●
Otherwise, parser can shift x and reduce B → β ● (shift-reduce conflict)

 If a state contains A → α ● then it cannot contain B → β ●
Otherwise, parser can reduce A → α ● and B → β ● (reduce-reduce conflict)

 LR(0) lacks the power to parse programming language grammars
 Because they do not use the lookahead token in making parsing decisions

LR Parsing Techniques – 22 Compiler Design – © Muhammed Mudawwar

SLR(1) Parsing
 SLR(1), or simple LR(1), improves LR(0) by …

Making use of the lookahead token to eliminate conflicts

 SLR(1) works as follows …
 It uses the same DFA obtained by the LR(0) parsing method
 It puts reduce actions only where indicated by the FOLLOW set

 To reduce α to A in A → α ● we must ensure that …
Next token may follow A (belongs to FOLLOW(A))

 We should not reduce A → α ● when next token ∉ FOLLOW(A)
 In grammar G2 …

 0: S' → S $ 1: S → (S) S 2: S → ε
 FOLLOW(S) = {$,)}
 Productions 1 and 2 are reduced when next token is $ or) only

LR Parsing Techniques – 23 Compiler Design – © Muhammed Mudawwar

SLR(1) Parsing Table
 The SLR(1) parsing table of grammar G2 is shown below

 The shift-reduce conflicts are now eliminated
 The R2 action is removed from [0, (], [2, (], and [4, (]

 Because (does not follow S

 S2 remains under [0, (], [2, (], and [4, (]

 R1 action is also removed from [5, (]

 Grammar G2 is SLR(1)
No conflicts in parsing table

 R1 and R2 for) and $ only

 Follow set indicates when to reduce

Action Goto

0
1
2
3

State () $ S
S2 G1

G3
A

S4
4
5

R2 R2

S2 R2 R2

G5 S2 R2 R2
R1 R1

LR Parsing Techniques – 24 Compiler Design – © Muhammed Mudawwar

SLR(1) Grammars
 SLR(1) parsing increases the power of LR(0) significantly

 Lookahead token is used to make parsing decisions
 Reduce action is applied more selectively according to FOLLOW set

 A grammar is SLR(1) if two conditions are met in every state …
 If A → α ● x γ and B → β ● then token x ∉ FOLLOW(B)
 If A → α ● and B → β ● then FOLLOW(A) ∩ FOLLOW(B) = ∅

 Violation of first condition results in shift-reduce conflict
 A → α ● x γ and B → β ● and x ∈ FOLLOW(B) then …
 Parser can shift x and reduce B → β

 Violation of second condition results in reduce-reduce conflict
 A → α ● and B → β ● and x ∈ FOLLOW(A) ∩ FOLLOW(B)
 Parser can reduce A → α and B → β

 SLR(1) grammars are a superset of LR(0) grammars

LR Parsing Techniques – 25 Compiler Design – © Muhammed Mudawwar

Limits of the SLR(1) Parsing Method
 Consider the following grammar G3 …
 0: S' → S $ 1: S → id 2: S → V := E 3: V → id 4: E → V 5: E → n

 The initial state consists of 4 items as shown below
When id is shifted in state 0, we obtain 2 items: S → id • and V → id •

 FOLLOW(S) = {$} and FOLLOW(V) = {:= , $}
 Reduce-reduce conflict in state 1 when lookahead token is $

 Therefore, grammar G3 is not SLR(1)
 The reduce-reduce conflict is caused by the weakness of SLR(1) method
 V → id should be reduced only when lookahead token is := (but not $)

S → id •
V → id • 1

id S' → • S $
S → • id
S → • V := E
V → • id 0

LR Parsing Techniques – 26 Compiler Design – © Muhammed Mudawwar

General LR(1) Parsing – Items and States
 Even more powerful than SLR(1) is the LR(1) parsing method
 LR(1) generalizes LR(0) by including a lookahead token in items
 An LR(1) item consists of …

Grammar production rule
Right-hand position represented by the dot, and
 Lookahead token

 A → X1 . . . Xi • Xi+1 . . . Xn , l where l is a lookahead token
 The • represents how much of the right-hand side has been seen

 X1 . . . Xi appear on top of the stack
 Xi+1 . . . Xn are expected to appear

 The lookahead token l is expected after X1 . . . Xn appear on stack
 An LR(1) state is a set of LR(1) items

LR Parsing Techniques – 27 Compiler Design – © Muhammed Mudawwar

LR(1) Parser Generation – Initial State
 Consider again grammar G3 …
 0: S' → S $ 1: S → id 2: S → V := E 3: V → id 4: E → V 5: E → n

 The initial state contains the LR(1) item: S' → • S , $
 S' → • S , $ means that S is expected and to be followed by $

 The closure of (S' → • S , $) produces the initial state items
 Since the dot appears before S, an S is expected
 There are two productions of S: S → id and S → V := E

 The LR(1) items (S → • id , $) and (S → • V := E , $) are obtained
 The lookahead token is $ (end-of-file token)

 Since the • appears before V in (S → • V := E , $), a V is expected

 The LR(1) item (V → • id , :=) is obtained
 The lookahead token is := because it appears after V in (S → • V := E , $)

LR Parsing Techniques – 28 Compiler Design – © Muhammed Mudawwar

Shift Action
 The initial state (state 0) consists of 4 items
 In state 0, we can shift an id

 The token id can be shifted in two items
When shifting id, we shift the dot past the id
We obtain (S → id • , $) and (V → id • , :=)
 The two LR(1) items form a new state (state 1)
 The two items are reduce items
No additional item can be added to state 1

S' → • S , $
S → • id , $
S → • V := E , $
V → • id , := 0

S' → • S , $
S → • id , $
S → • V := E , $
V → • id , := 0

id S → id • , $
V → id • , := 1

LR Parsing Techniques – 29 Compiler Design – © Muhammed Mudawwar

Reduce and Goto Actions
 In state 1, • appears at end of (S → id • , $) and (V → id • , :=)

 This means that id appears on top of stack and can be reduced
 Two productions can be reduced: S → id and V → id

 The lookahead token eliminates the conflict of the reduce items
 If lookahead token is $ then id is reduced to S
 If lookahead token is := then id is reduced to V

 When in state 0 after a reduce action …
 If S is pushed, we obtain item (S' → S • , $) and go to state 2
 If V is pushed, we obtain item (S → V • := E , $) and go to state 3

Accept
$

S' → • S , $
S → • id , $
S → • V := E , $
V → • id , := 0 V

id

S → V • := E , $ 3

S → id • , $
V → id • , := 1

S' → S • , $ 2 S

LR Parsing Techniques – 30 Compiler Design – © Muhammed Mudawwar

LR(1) State Diagram
 The LR(1) state diagram of grammar G3 is shown below
 Grammar G3, which was not SLR(1), is now LR(1)
 The reduce-reduce conflict that existed in state 1 is now removed
 The lookahead token in LR(1) items eliminated the conflict

:=

Accept
$

S' → • S , $
S → • id , $
S → • V := E , $
V → • id , := 0 V

id

S → V • := E , $ 3

S → id • , $
V → id • , := 1

S

S → V := E • , $ 5

S' → S • , $ 2 S → V := • E , $
E → • V , $
E → • n , $
V → • id , $ 4

E → V • , $ 6

E → n • , $ 7

V → id • , $ 8 id

n

V

E

LR Parsing Techniques – 31 Compiler Design – © Muhammed Mudawwar

LR(1) Grammars
 A grammar is LR(1) if the following two conditions are met …

 If a state contains (A → α ● x γ, a) and (B → β ●, b) then b ≠ x

 If a state contains (A → α ●, a) and (B → β ●, b) then a ≠ b

 Violation of first condition results in a shift-reduce conflict

 If a state contains (A → α ● x γ, a) and (B → β ●, x) then …
 It can shift x and can reduce B → β when lookahead token is x

 Violation of second condition results in reduce-reduce conflict

 If a state contains (A → α ●, a) and (B → β ●, a) then …
 It can reduce A → α and B → β when lookahead token is a

 LR(1) grammars are a superset of SLR(1) grammars

LR Parsing Techniques – 32 Compiler Design – © Muhammed Mudawwar

Drawback of LR(1)
 LR(1) can generate very large parsing tables
 For a typical programming language grammar …

 The number of states is around several hundred for LR(0) and SLR(1)
 The number of states can be several thousand for LR(1)

 This is why parser generators do not adopt the general LR(1)
 Consider again grammar G2 for matched parentheses

 0: S' → S $ 1: S → (S) S 2: S → ε

 The LR(1) DFA has 10 states, while the LR(0) DFA has 6

LR Parsing Techniques – 33 Compiler Design – © Muhammed Mudawwar

LR(1) DFA of Grammar G2

) $

S S

Accept

(

1

0 2

S → (S •) S $
3

S → (• S) S $
S → • (S) S)
S → •)

S

S → (S) • S $
S → • (S) S $
S → • $

S → (S) S • $

4

5

)

S

6

S → (S •) S)
7

S
S → (S) S •)

8

9

(

((
S → (S) • S)
S → • (S) S)
S → •)

S → (• S) S)
S → • (S) S)
S → •)

S' → • S $
S → • (S) S $
S → • $

S' → S • $

(

LR Parsing Techniques – 34 Compiler Design – © Muhammed Mudawwar

LALR(1) : Look-Ahead LR(1)
 Preferred parsing technique in many parser generators
 Close in power to LR(1), but with less number of states
 Increased number of states in LR(1) is because

Different lookahead tokens are associated with same LR(0) items

 Number of states in LALR(1) = states in LR(0)
 LALR(1) is based on the observation that

 Some LR(1) states have same LR(0) items
Differ only in lookahead tokens

 LALR(1) can be obtained from LR(1) by
Merging LR(1) states that have same LR(0) items
Obtaining the union of the LR(1) lookahead tokens

LR Parsing Techniques – 35 Compiler Design – © Muhammed Mudawwar

LALR(1) DFA of Grammar G2

S

Accept
$

S S

(

1

0 2

3

S → (• S) S $)
S → • (S) S)
S → •)

4

5

(

S' → • S $
S → • (S) S $
S → • $

S' → S • $

S → (S) • S $)
S → • (S) S $)
S → • $)

Accept S → (S •) S $) Accept S → (S) S • $)

)

(

(

	Bottom-Up Parsing
	Handles
	Stack Implementation of a Bottom-Up Parser
	Example on Bottom-Up Parsing
	LR Parsing
	LR Parsing – cont'd
	LR Parsers
	LR Parsing Table Example
	LR Parsing Example
	LR Parser Driver
	LR(0) Parser Generation – Items and States
	LR(0) Parser Generation – Initial State
	Identifying the Initial State
	Shift Actions
	Reduce and Goto Actions
	DFA of LR(0) States
	LR(0) Parsing Table
	LR(0) Parsing Table – cont'd
	Limitations of the LR(0) Parsing Method
	Conflicts
	LR(0) Grammars
	SLR(1) Parsing
	SLR(1) Parsing Table
	SLR(1) Grammars
	Limits of the SLR(1) Parsing Method
	General LR(1) Parsing – Items and States
	LR(1) Parser Generation – Initial State
	Shift Action
	Reduce and Goto Actions
	LR(1) State Diagram
	LR(1) Grammars
	Drawback of LR(1)
	LR(1) DFA of Grammar G2
	LALR(1) : Look-Ahead LR(1)
	LALR(1) DFA of Grammar G2

