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Abstract

Injectivity of objects with respect to a set H of morphisms is an important
concept of algebra, model theory and homotopy theory. Here we study the logic
of injectivity consequences of H, by which we understand morphisms h such that
injectivity with respect to H implies injectivity with respect to h. We formulate
three simple deduction rules for the injectivity logic and for its finitary version
where morphisms between finitely ranked objects are considered only, and prove
that they are sound in all categories, and complete in all “reasonable” categories.

1 Introduction

Recall that an object A is injective w.r.t. a morphism h : P — P’ provided that every
morphism from P to A factors through h. We address the following problem: given a
set ‘H of morphisms, which morphisms h are injectivity consequences of ‘H in the sense
that every object injective w.r.t. all members of ‘H is also injective w.r.t. h? We denote
the injectivity consequence relationship by H = h.

This is a classical topic in general algebra: the equational logic of Garrett Birkhoff
[10] is a special case. In fact, an equation s = ¢ is a pair of elements of a free algebra
F, and that pair generates a congruence ~ on F. An algebra A satisfies s = t iff it is
injective w.r.t. the canonical epimorphism

h:F —F/~.

Thus, if we restrict our sets H to regular epimorphisms with free domains, then the logic
of injectivity becomes precisely the equational logic. However, there are other important
cases in algebra: recall for example the concept of injective module, where H is the set
of all monomorphisms (in the category of modules).

To mention an example from homotopy theory, recall that a Kan complex [14] is a
simplicial set injective w.r.t. all the monomorphisms AF — A, (for n, k € N, k < n)
where A,, is the complex generated by a single n-simplex and AF is the subcomplex
obtained by deleting the k-th 1-simplex and all adjacent faces. We can ask for example
whether Kan complexes can be specified by a simpler collection of monomorphisms, as
a special case of our injectivity logic.
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Injectivity establishes a Galois correspondence between objects and morphisms of
a category. The closed families on the side of objects are called injectivity classes: for
every set ‘H of morphisms we obtain the injectivity class InjH, i.e., the class of all objects
injective w.r.t. H. In [5] small-injectivity classes in locally presentable categories were
characterized as precisely the full accessible subcategories closed under products, and
in [18] this was sharpened in the following sense. Let us call a morphism A-ary if its
domain and codomain are A-presentable objects. Injectivity classes with respect to A-ary
morphisms are precisely the full subcategories closed under products, A-filtered colimits,
and A-pure subobjects. For injectivity w.r.t. cones or trees of morphisms similar results
are in [7] and [15].

In the present paper we study closed sets on the side of morphisms, i.e., we develop a
deduction system for the above injectivity consequence relationship f=. It has altogether
three deduction rules, which are quite intuitive. Firstly, observe that every object injec-
tive w.r.t. a composite h = hy - hy is injective w.r.t. the first morphism h;. This gives
us the first deduction rule

hs - hy
CANCELLATION EErE—
ha
It is also easy to see that injectivity w.r.t. A implies injectivity w.r.t. any morphism A’

opposite to h in a pushout (along an arbitrary morphism), which yields the rule
h

h g
PUSHOUT T for every pushout i
h/

Finally, an object injective w.r.t. two composable morphisms is also injective w.r.t. their
composite. The same holds for three, four, ... morphisms — but also for a transfinite
composite as used in homotopy theory. For example, given an w-chain of morphisms

ho h1 ha

AQ Al AQ

then their w-composite is the first morphism ¢y : A9 — C of (any) colimit cocone
¢t An — C(n € N) of the chain. Observe that ¢y is indeed an injectivity consequence
of {h;; i <w}. For every ordinal A\ we have the concept of a A-composite of morphisms
(see 2.10 below) and the following deduction rule, expressing the fact that an object
injective w.r.t. each h; is injective w.r.t. the transfinite composite:

TRANSFINITE COMPOSITION i

for every A-composite h of (h;)i<x
We are going to prove that the Injectivity Logic based on the above three rules is sound
and complete. That is, given a set H of morphisms, then H = h holds for precisely those
morphisms h which can be proved from assumptions in ‘H using the three deduction rules
above. This holds in a number of categories, e.g., in

(a) every variety of algebras,

(b) the category of topological spaces and many nice subcategories (e.g. Hausdorff
spaces), and



(c) every locally presentable category of Gabriel and Ulmer.

We introduce the concept of a strongly locally ranked category encompassing (a)-(c)
above, and prove the soundness and completeness of our Injectivity Logic in all such
categories.

Observe that the above logic is infinitary, in fact, it has a proper class of deduction
rules: one for every ordinal A in the instance of TRANSFINITE COMPOSITION. We also
study, following the footsteps of Grigore Rosu, the completeness of the corresponding
Finitary Injectivity Logic: it is the restriction of the above logic to A finite. Well, all we
need to consider are the cases A = 2, called COMPOSITION, and A = 0, called IDENTITY:

hi ho

COMPOSITION —_—
h for h = hl : ho

IDENTITY id4

The resulting finitary deductive system (introduced in [6] as a slight modification of the
deduction system of Grigore Rogu [19]) has four deduction rules; it is clearly sound, and
the main result of our paper (Theorem 6.2) says that it is also complete with respect
to finitary morphisms, i.e., morphisms with domain and codomain of finite rank. This
implies the expected compactness theorem: every finitary injectivity consequence of a
set ‘H of finitary morphisms is an injectivity consequence of some finite subset of H.

The completeness theorem for Finitary Injectivity Logic will then be extended to
the k-ary Injectivity Logic, defined in the expected way. Then the full completeness
theorem easily follows.

The fact that the full Injectivity Logic above is complete in strongly locally ranked
categories can also be derived from Quillen’s Small Object Argument [17], see Remark
3.9 below. However our sharpening to the k-ary logic for every cardinal k& cannot be
derived from that paper, and we consider this to be a major step.

Related work Bernhard Banaschewski and Horst Herrlich showed thirty years ago
that implications in general algebra can be expressed categorically via injectivity w.r.t.
regular epimorphisms, see [9]. A generalization to injectivity w.r.t. cones or even trees
of morphisms was studied by Hajnal Andréka, Istvan Németi and Ildiké Sain, see e.g.
[7, 8, 15].

To see more precisely how that work relates to ours and to classical logic, consider
injectivity in the category of all ¥-structures (and 3-homomorphisms), where ¥ is any
signature. Then recall from [4], 5.33 that there is a natural way to associate to a
(finitary) morphism f : A — B a (finitary) sentence

=YX (AA'(X) — Y (AB'(X,Y)))

(where A'(X) and B'(X,Y) are sets of atomic formulas) such that an object C' satisfies
f'if and only if it is injective with respect to f (see 2.22 below for more on this).
Such sentences are called regular sentences. In this paper we concentrate on the proof
theory for the (finite and infinite) regular logics. As mentioned above, the restriction



to epimorphisms correspond to considering only the quasi-equations (i.e., no existential
quantifiers), and just equations if we impose they have projective domains.

Recently, Grigore Rosu introduced a deduction system for injectivity, see [19], and
he proved that the resulting logic is sound and complete for epimorphisms which are
finitely presentable, see 3.5, and have projective domains. A slight modification of Rosu’s
system was introduced in [6]: this is the deduction system 2.4 below. It differs from
[19] by formulating PUSHOUT more generally and using COMPOSITION in place of Rogu’s
UNION. In [6] completeness is proved for sets of epimorphisms with finitely presentable
domains and codomains. (This is slightly stronger than requiring the epimorphisms to
be finitely presentable, however, without the too restrictive assumption of projectivity
of the domains the logic fails to be complete for finitely presentable epimorphisms in
general, see [6].)

In the present paper completeness of the finitary logic is proved for arbitrary mor-
phisms (not necessarily epimorphisms) with finitely presentable domains and codomains.
The fact that the assumption of epimorphism is dropped makes the proof substantially
more difficult. We present a short proof in locally presentable categories first, and then
a proof of a more general result for strongly locally ranked categories. We also formulate
the appropriate infinitary logic dealing with arbitrary morphisms.

There are other generalizations of Birkhoff’s equational logic which are, except for the
common motivation, not related to our approach. For example the categorical approach
to logic of (ordered) many-sorted algebras of Razvan Diaconescu [11], and the logic of
implications in general algebra of Robert Quackenbush [16].

In our joint paper [1] we are taking another route to generalize the equational logic:
we consider orthogonality of objects to a morphism instead of injectivity. The deduction
system is similar: the rule CANCELLATION has to be weakened, and an additional rule
concerning coequalizers is added. We prove the completeness of the resulting logic of
orthogonality in locally presentable categories. The corresponding sentences are the so
called limit sentences, VX (AA'(X) — Y (AB'(X,Y))), where 3'Y means “there exists
exactly one Y such that”.

2 Logic of injectivity

2.0. Assumption Throughout the paper we assume that we are working in a cocom-
plete category.

2.1. Definition A morphism 5 is called an injectivity consequence of a set of morphisms
‘H, notation

H = h

provided that every object injective w.r.t. all morphisms in H is also injective w.r.t. h.

2.2. Examples (1) A composite h = hy - hy is an injectivity consequence of {hy, ha}.
(2) Conversely, in every composite h = hs - hy the morphism h; is an injectivity



consequence of h:

v
X
(3) In every pushout
A" A
B ?’ B’
h' is an injectivity consequence of h:
A"y
\
u o\
L
\
B ——— B,\ \
N \
O\
N
X

2.3. Remark The above examples are exhaustive. More precisely, the following de-
duction system, introduced in [6], see also [19], (where, however, it was only applied to
epimorphisms) will be proved complete below:

2.4. Definition The Finitary Injectivity Deduction System consists of one axiom

IDENTITY .
ldA
and three deduction rules
h b ey )
COMPOSITION TR if K’ - h is defined
h - h
CANCELLATION 7
and
" h
PUSHOUT x if l
h/

We say that a morphism h is a formal consequence of a set H of morphisms (notation
H F h) in the Finitary Injectivity Logic if there exists a proof of h from H (which
means a finite sequence hq, ..., h, = h of morphisms such that for every ¢ = 1,...,n the

morphism h; lies in H or is a conclusion of one of the deduction rules whose premises
lie in {hl, ceey hi,1}>.



2.5. Lemma The Finitary Injectivity Logic is sound, i.e., if a morphism h is a formal
consequence of a set of morphisms H, then h is an injectivity consequence of H. Briefly:

H E h implies H |= h.
The proof follows from 2.2.

2.6. Remark Later we define finitary morphisms (as morphisms whose domains and
codomains are finitely presentable (Section 3) or of finite rank (Section 5)), and in
Section 6 we prove that the resulting Finitary Injectivity Logic is complete, i.e., that

H = h implies HFh
for every set ‘H of finitary morphisms and every A finitary.
2.7. Example The following rule

hi hs
FINITE COPRODUCT ———7F—
hi + ho
(where for h; : A; — B; the morphism hy + hy : Ay + Ay — B; + By is the canonical
coproduct morphism) is obviously sound. Here is a proof in the Finitary Injectivity
Logic:
Using the pushouts

A, hi B, A ha By
Al—‘—Ang—{_AQ Bl“‘Ang_‘_BQ
we can write
hl h2 ]
via PUSHOUT
hy +idy, idp, +hs via COMPOSITION
h1 + h2

since hl + hg = (idBl +h2) . (hl + idAQ).
2.8. Example The following rule
FINITE WIDE PUSHOUT

for every wide pushout

h1 i l%
where h = ICZ . hl

is sound. Here is a proof in the Finitary Injectivity Logic:
If n =2 we have



hy ho
ks
h = ks - hy

via PUSHOUT

via COMPOSITION

If n = 3 denote by r a pushout of hy, hy, then a pushout, hj,

of hs along r forms a wide pushout of hy, hy and hs:

hi hy hs .
- 7 via PUSHOUT
k .
2 via COMPOSITION
T .
via PUSHOUT
ks
_ via COMPOSITION
h =ks- hs

Etc.

2.9. Remark We want to define a composition of a chain of A morphisms for every
ordinal A (see the case A = w in the Introduction). Recall that a A-chain is a functor A
from A\, the well-ordered category of all ordinals 7 < .

Recall further that A* denotes the successor ordinal, i.e., the set of all 7 < \.

2.10. Definition (i) We call a A-chain A smooth if for every limit ordinal i < A we have

A; = colim A,
1<t
with the colimit cocone of all a;; = A(j — ).

(ii)) A morphism h is called a A-composite of morphisms (h;);<x, where X is an
ordinal, if there exists a smooth A™-chain A with connecting morphisms a;; : A; — A;
for + < 7 < X such that

hi = ai;y1 for all i < A

and
h = Qg \-

2.11. Examples A = 0: No morphism h; is given, just an object Ag; and h = ag is
the identity morphism of Aj.

A = 1: A morphism hy is given, and we have h = ag; = hg. Thus, a 1-composite of
ho is h(].



A = 2: This is the usual concept of composition: given morphisms hg, hy, their
2-composite exists iff they are composable. Then h; - hg is the 2-composite.

A = w: This is the case mentioned in the Introduction. Observe that, unlike the
previous cases, an w-composite is only unique up to isomorphism.

2.12. Lemma A \-composite of morphisms (h;);<x is an injectivity consequence of these
morphisms.
Proof This is a trivial transfinite induction on A. In case A = 0 this states that id4 is

an injectivity consequence of (), etc.

2.13. Definition The Injectivity Deduction System consists of the deduction rules

h - h

CANCELLATION h

h
h ’

PUSHOUT X for every pushout i
h/

and the rule scheme (one rule for every ordinal \)

h

TRANSFINITE COMPOSITION for every A-composite h of (h;);<x

We say that a morphism h is a formal consequence of a set H of morphisms (notation
H F h) in the Injectivity Logic if there exists a proof of h from H (which means a chain
(h;)i<n of morphisms, where n is an ordinal, such that A = h,,, and each h; either lies in
H, or is a conclusion of one of the deduction rules whose premises lie in {h;},-;).

2.14. Lemma The Injectivity Logic is sound, i.e., if a morphism h is a formal con-
sequence of a set H of morphisms, then h is an injectivity consequence of H. Briefly:
H 't h implies H = h.

The proof (using 2.12) is elementary.

2.15. Remark In 2.13 we can replace TRANSFINITE COMPOSITION by the deduction
rule WIDE PUSHOUT, see below, which makes use of the (obvious) fact that an object
A injective w.r.t. a set {h;}i<) of morphisms having a common domain is also injective
w.r.t. their wide pushout. Let us note here that this rule does not replace PUSHOUT of
2.13 (because in the latter a pushout of h along an arbitrary morphism is considered).

2.16. Definition The deduction rule

WIDE PUSHOUT hi (i < X)
h
applies, for every cardinal A, to an arbitrary object P and an arbitrary set {h;} of A

for h a wide pushout of {h;};<



morphisms with the common domain P and the following wide pushout

h =k; - h; (for any 1)

v

Remark Again, this is a scheme of deduction rules: for every cardinal A\ we have
one rule A-WIDE PUSHOUT. Observe that A = 0 yields the rule IDENTITY.

|
N

2.17. Lemma The Injectivity Deduction System 2.13 is equivalent to the deduction
system
COMPOSITION, CANCELLATION, PUSHOUT and WIDE PUSHOUT.

Proof (1) We can derive WIDE PUSHOUT from 2.13. For every ordinal number A\ we
derive the rule

hi(lh<)\> for h a wide pushout of {h;};<a
by transfinite induction on the ordinal A\. We are given an object P and morphisms
hi: P — P;(i < X). The case A = 0 is trivial, from X derive A 4+ 1 by using PUSHOUT,
and for limit ordinals A form the restricted multiple pushouts @); of morphisms A, for
1 < 7, and observe that they form a smooth chain whose composite is a multiple pushout
of all h;’s.

(2) From the system in 2.17 we can derive the rule A-COMPOSITION, where A is an
arbitrary ordinal: the case A = 0 follows from 0-WIDE PUSHOUT. The isolated step
uses COMPOSITION: the (A + 1)-composite of (h;)i<y is simply hy - k where k is the
A-composite of (h;);<x. In the limit case, use the fact that a composite h of (h;);<y is a
wide pushout of {k;};<x, where k; is a composite of (h;),<;.

2.18. Remark For every infinite cardinal k the k-ary Injectivity Deduction System is
the system 2.13 where X ranges through ordinals smaller than k. A proof of a morphism
h from a set H in the k-ary Injectivity Logic is, then, a proof of length n < k using
only the deduction rules with A restricted as above. The last lemma can, obviously, be
formulated under this restriction in case we use the scheme A\-WIDE PUSHOUT for all
cardinals A < k.

2.19. Definition The deduction rule

Hi<>\ h;

applies, for every cardinal A, to an arbitrary collection of A morphisms h; : A; — B;.

COPRODUCT



2.20. Lemma The Injectivity Deduction System 2.13 is equivalent to the deduction
system of 2.17 with WIDE PUSHOUT replaced by
IDENTITY + COPRODUCT

Proof (1) copropucTt follows from 2.17. In fact, [[,_, ki : [[,o) A — [, B s
a wide pushout of the morphisms &; : [],_., A — [[;.; A + Bj + 1, ;5 Ai, where j
ranges through A, with components ida, (i # j) and h;, and k; is a pushout of h; along
the j-th coproduct injection of J],_, A;.

(2) Conversely, WIDE PUSHOUT follows from IDENTITY+COPRODUCT. We obviously
need to consider only A > 1 and then we use the fact that given morphisms h; : A —
B; (i < A), their wide pushout h : A — C can be obtained from [],_, h; by pushing out
along the codiagonal V : [[, A — A:

o

h

2.21. Remark The deduction system of the last lemma has five rules, but the advantage
against the system 2.13 is that they are particularly simple to formulate:

IDENTITY idA
ho - hq
CANCELLATION ———
hy
COMPOSITION hy In
hg . hl if hQ . hl is defined
" h
PUSHOUT ; given
h y
hi (i €1)
COPRODUCT

Hie] h;

We prove below that 2.13, and therefore the above equivalent deduction system, is
not only sound but (in a number of categories) also complete.

2.22. Remark To relate our deduction rules to the usual ones (of classical logic), let
us consider, as in the Introduction, the category of all ¥-structures. Then any object
A can be presented by a set A’(X) of atomic formulas with parameters X in A: for the
familiar algebraic structures, this is just the usual concept of generators and relations.
Given a morphism f : A — B, and such presentations A’'(X) and B.(Y) of A and B,
we can also present B by B'(X,Y), which is the union of B/(Y) and the set of all the

10



equations x = t(Y") for which f(z) =¢(Y") (¢t a X-term). Then for the sentence
[ =VX(ANA(X) — Y (AB'(X,Y)))

we have that an object C' is f-injective iff C' = f’. Note that if f is finitary (see the
Introduction or 3.4 below), the presentations, and hence f’, can be chosen to be finitary
(more details in [4], 5.33). Now, we can associate Gentzen-style rules to sets of atomic
formulas, generalizing the idea of what was done (with more accuracy) in [6] for sets of
equations: associating

A(X)= B'(X,Y)
to VX(AA(X) — Y (AB'(X,Y))), the IDENTITY axiom is of course

AX)=AX)
CANCELLATION is a categorical version of the “restriction” rule

A(X) = (B(X,Y)UCX,Y,Z))
A(X)= B(X,Y) ’

PUSHOUT is essentially the “weakening” rule

A(X)= B'(X,)Y) .
(A(X)uC'(X,2)) = B(X,Y) ’

and COMPOSITION is a “ cut” rule

A(X)= B(X,Y), B(X,Y)= C'(X,Y,Z)
A(X)= C'(X,Y,Z)

The usual stronger “cut” rule

A(X) = B(X,Y), (B(X,Y)UC'X,Y,Z)) = D'(X,Y, Z,U)
(A(X)UC'(X,Y,Z)) = D'(X,Y, Z,U)

corresponds to

At-B B+Cc—2-D

A4 C g-(f+1c) C

which is proved via

f g PUSHOUT
f+ide g COMPOSITION
g-(f+1¢)

11



3 Completeness in locally presentable categories

3.1. Assumption In the present section we study injectivity in a locally presentable
category A of Gabriel and Ulmer, see [12] or [4]. This means that:

(a) A is cocomplete,
and

(b) there exists a regular cardinal A\ such that A has a set of A-presentable objects
whose closure under M-filtered colimits is all of A.

Recall that an object A is A-presentable if its hom-functor hom(A,—) : A — Set
preserves \-filtered colimits. That is, given a A-filtered diagram D with a colimit ¢; :
D; — C (i € I) in A, then for every morphism f: A — C

(i) a factorization of f through ¢; exists for some i € I,
and

(ii) factorizations are essentially unique, i.e., given ¢ € [ and ¢; - ¢’ = ¢; - ¢” for some
q,q" : A — D,, there exists a connecting morphism d;; : D; — D; of the diagram
with dij : g/ = dij : g//.
3.2. Examples (see [4]) Sets, presheaves, varieties of algebras and simplicial sets are
examples of locally presentable categories. Categories such as Top (topological spaces)
or Haus (Hausdorff spaces) are not locally presentable.

3.3. Remark (a) In the present section we prove that the Injectivity Logic is complete
in every locally presentable category. The reader may decide to skip this section since
we prove a more general result in Section 6. Both of our proofs are based on the fact that
for every set H of morphisms the full subcategory InjH (of all objects injective w.r.t.
morphisms of H) is weakly reflective. That is: every object A € A has a morphism
r: A — A, called a weak reflection, such that

(i) A lies in InjH
and

(ii) every morphism from A to an object of InjH factors through r (not necessarily
uniquely).

In the present section we will utilize the classical Small Object Argument of D. Quillen
[17]: this tells us that every object A has a weak reflection r : A — A in InjH such that
r is a transfinite composite of morphisms of the class

H= {k; k is a pushout of a member of H along some morphism}.

(b) The reason for proving the completeness based on the Small Object Argument
in the present section is that the proof is short and elegant. However, by using a more
refined construction of weak reflection in InjH, which we present in Section 5, we will be

12



able to prove the completeness in the so-called strongly locally ranked categories, which
include Top and Haus.

The spirits of the two proofs are quite different. Given an injectivity consequence
h of a set of morphisms, in this section we will show how to derive a formal proof of h
from Quillen’s construction of the weak reflection; this construction is “linear”, forming
a transfinite composite. In the next section, a weak reflection will be constructed as
a colimit of a filtered diagram which somehow presents simultaneously all the possible
formal proofs.

3.4. Definition A morphism is called A-ary provided that its domain and codomain
are A-presentable objects. For A = X we say finitary.

3.5. Remark (a) The A-ary morphisms are precisely the A-presentable objects of the
arrow category A~. In contrast, M. Hébert introduced in [13] A-presentable morphisms;
these are the morphisms f : A — B which are A\-presentable objects of the slice category
A | A. In the present paper we will not use the latter concept.

(b) We work now with the Finitary Injectivity Logic, i.e., the deduction system 2.4
applied to finitary morphisms. We generalize this to the k-ary logic below.

3.6. Theorem The Finitary Injectivity Logic is complete in every locally presentable
category A. That is, given a set H of finitary morphisms in A, then every finitary
morphism h which is an injectivity consequence of H s a formal consequence in the
deduction system 2.4. Briefly:

H = h implies H + h.

Proof Given a finitary morphism h : A — B which is an injectivity consequence of H,
we prove that

HF h.

(a) The above object A has a weak reflection
r:A— A

such that r is a transfinite composition of morphisms in 7-7, see 3.3(a). Since H = h, it
follows that A is injective w.r.t. h, which yields a morphism u forming a commutative

triangle
R
N
B

(b) Consider all commutative triangles as above where r : A — A is any a-composite

A

of morphisms in H for some ordinal « and u is arbitrary. We prove that the least possible
« is finite. This finishes the proof of H = h: In case a = 0, we have that id = u - h, and
we derive h via IDENTITY and CANCELLATION. In case « is a finite ordinal greater than
0, we have that r is provable from H using PUSHOUT and COMPOSITION. Consequently,
via CANCELLATION, we get h.

13



Let C be the class of all ordinals o such that there are an a-composite 7 of morphisms
of H and a morphism u with r = u - h. To show that the least member ~ of C is finite,
we prove that for each ordinal v > w in C we can find another ordinal in C which is
smaller than ~.

A. Case v = #+ m, with § a limit ordinal and m > 0 finite. Let a;;+1 (i < 4+ m) be
the corresponding chain with 7 = ag g4m. Since ag i1 lies in H, we can express it as a
pushout of some morphism %k : D — D" in H:

D——D
q
D p
N N A A A
Ao = A Ai +1A’+1 Ait1 +2A"+2 @i+2,i+3 B ag pro AL
v l Vit1 l Vit2 vﬁl /
Pi Pii+1 PZ+1 pi+l,i+ﬁ+2 Pi+2,i+3 Y ’8

We have a colimit Az = colim;.3 A; of a chain of morphisms. Hence, because D
is finitely presentable, p factorizes as p = a;g - ¢ for some ¢ <  and some morphism
q: D — A;. Let v; be a pushout of k along ¢, and form a sequence v; of pushouts of
k along a;; - q(j < f) as illustrated in the diagram above (taking colimits at the limit
ordinals). Then it is easily seen, due to p = a;3 - ¢, that vz = colim;.gv; is a pushout of
k along p. Thus, without loss of generality,

P = Apyr and vg = ag g,
Observe that, since a; ;41 lies in 7—7, PUSHOUT implies that
Pji+1 € 7/'2 for all i < j < f.

Also v; € H since it is a pushout of k along ¢q. Consequently, ap g+ is a S-composite of
morphisms b; ;11 (j < B) of H as follows (where [ is the first limit ordinal after 7):

bj7j+1 = Qjj+1 for all] < i,

bi,i-i—l = U,

bj,jJrl = Pj-1, for all i < 7 <l

and
bj,j—i—l = Pjj+1 for all { S] < ﬁ
Thus r = ag g+m is a (8 + (m — 1))-composite of morphisms of H.
B. Case 7 is a limit ordinal. The morphism
u: B — A= colim A,
1<y

factors, since B is finitely presentable, through some a;,, ¢ < 7:

U = a;y - u for some u: B — A;.

14



The parallel pair

u-h
A=Ay T A
aog;

is clearly merged by the colimit morphism a;y, of A, = colim,;, A;. Since A is finitely
presentable, hom(A, —) preserves that colimit, consequently (see (ii) in 3.1.b), the par-
allel pair is also merged by a connecting morphism a;; : A; — A; for some i < j < :

aij-ﬂ-h:aoj.

This gives us a commutative triangle

Ay -5 4, 225 A;
B

thus ao; is a j-composite of morphisms of H with 7 <n.

3.7. Remark The above theorem immediatly generalizes to the k-ary Injectivity Logic,
i.e., to the deduction system of 2.18 applied to k-ary morphisms. Recall that for every
set of objects in a locally presentable category there exists a cardinal k such that all
these objects are k-presentable. Consequently, for every set HU{h} of morphisms there
exists k such that all members are k-ary. The proof that H | h implies H + h is
completely analogously to 3.6: We show that the least possible « is smaller than k, thus
in Cases A. and B. we work with v > k.

3.8. Corollary The Injectivity Logic is sound and complete in every locally presentable
category.

In fact, given

H = h

find a cardinal k£ such that all members of H U {h} are k-ary morphisms. Then h is a
formal consequence of H by 3.7.

3.9. Remark The above corollary also follows from the Small Object Argument (see
3.3(a)): if h : A — B is an injectivity consequence of H and if r : A — A is the
corresponding weak reflection, then r is clearly a formal consequence of H. Since A is
injective w.r.t. h, it follows that r factors through A, thus, h is a formal consequence of
r (via CANCELLATION).

4 Strongly locally ranked categories

4.1. Remark Recall that a factorization system in a category is a pair (£, M) of classes
of morphisms containing all isomorphisms and closed under composition such that

(a) every morphism f: A — B has a factorization f =m-e withe: A — C in £ and
m:C — Bin M
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and

(b) given another such factorization f = m’-¢€’ there exists a unique “diagonal fill-in”
morphism d making the diagram

A——C
e / m
¢

commutative.

The factorization system is called left-proper if every morphism of £ is an epimor-
phism. In that case the £-quotients of an object A are the quotient objects of A repre-
sented by morphisms of £ with domain A.

4.2. Definition Let (£, M) be a factorization system. We say that an object A has
M-rank A\, where X is a regular cardinal, provided, that

(a) hom(A, —) preserves Afiltered colimits of diagrams of M-morphisms (i.e., given a
Mfiltered diagram D whose connecting morphisms lie in M, then every morphism
f A — colimD factors, essentially uniquely, through a colimit map of D)

and
(b) A has less than A £-quotients.
If A = Ny we say that the object A has finite M-rank.

4.3. Examples (1) For the factorization system (Iso, All), rank X is equivalent to A-
presentability.

(2) In the category Top of topological spaces, choose (£, M) = (Epi, Strong Mono).
Here the M-subobjects are precisely the embeddings of subspaces. Every topological
space A of cardinality a has M-rank X\ whenever A\ > 2**. In fact, hom(A, —) preserves
A-directed unions of subspaces since o < A. And the amount of quotient objects of A
(carried by epimorphisms) is at most » | s<a Eg1s where Ejg is the number of equivalence
relations on A of order 8 and T} is the number of topologies on a set of cardinality 3.
Since Ej and Ty are both < 227, we have Y pca BsTs < a- 22" - 22" < X, thus we
conclude that A has less than \ quotients.

4.4. Remark Every £-quotient of an object of M-rank A also has M-rank A. In fact
(a) in 4.2 follows easily by diagonal fill-in, and (b) is obvious.

4.5. Definition A category A is called strongly locally ranked provided that it has a
left-proper factorization system (€, M) such that

(i) A is cocomplete;

(ii) every object has an M-rank, and all objects of the same M-rank form a set up
to isomorphism;
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(iii) for every cardinal p the collection of all objects of M-rank p is closed under &-
quotients and under p-small colimits, i.e., colimits of diagrams with less than p
morphisms;

and

(iv) the subcategory of all objects of A and all morphisms of M is closed under filtered
colimits in A.

Remark The statement (iv) means that, given a filtered colimit with connecting
morphisms in M, then

(a) the colimit cocone is formed by morphisms of M
and
(b) every other cocone of M-morphisms has the unique factorizing morphism in M.

4.6. Examples (1) Every locally presentable category is strongly locally ranked: choose
& = isomorphisms, M = all morphisms.

In fact, see [4], 1.9 for the proof of (ii), whereas (iii) and (iv) hold trivially.
(2) Choose

& = epimorphisms, M = strong monomorphisms.

Here categories such as Top (which are not locally presentable) are included. In fact,
for a space A of cardinality @ we have that hom(A, —) preserves A-filtered colimits
(=unions) of subspaces whenever o < A. Thus, by choosing a cardinal A > « bigger
than the number of quotients of A we get an M-rank of A. It is easy to verify (iii) and
(iv) in Top.

(3) Let B be a full, isomorphism closed, E-reflective subcategory of a strongly locally
ranked category A. If B is closed under filtered colimits of M-morphisms in A, then B is
strongly locally ranked. In fact, B is closed under M in the sense that given m : A — B
in M with B € B, then A € B. (Indeed, we have a reflection r4 : A — A" in £ and
m =m'-ry for a unique m’; this implies that r4 € £ is an isomorphism, thus, A € B.)
Therefore the restriction of (£, M) to B yields a factorization system. It fulfils (ii)-(iv)
of 4.5 because B is closed under filtered colimits of M-morphisms.

(4) The category Haus of Hausdorff spaces is strongly locally ranked: it is an epire-
flective subcategory of Top closed under filtered unions of subspaces.

4.7. Observation In a strongly locally ranked category the class M is closed under
transfinite composition. This follows from (iv).

4.8. Definition A morphism is called k-ary if its domain and codomain have M-rank
k. In case k = Ny we speak of finitary morphisms.
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4.9. Remark The name “strongly locally ranked” was chosen since our requirements
are somewhat stronger than those of [2]: there a category is called locally ranked in case
it is cocomplete, has an (£, M)-factorization, is E-cowellpowered and for every object
A there exists an infinite cardinal A such that hom(A, —) preserves colimits of A-chains
of M-monomorphisms. Our definition of rank and the condition 4.5(ii) imply that
the given category is £-cowellpowered. Thus, every strongly locally ranked category is
locally ranked.

An example of a locally ranked category that is not strongly locally ranked is the
category of o-semilattices (posets with countable joins and functions preserving them):
condition 4.5(iv) fails here. Consider e.g. the w-chain of the posets exp(n) (where
n = {0,1,...,n — 1}), n € w, with inclusion as order. The colimit of this chain is
exp(N) ordered by inclusion. If M is the poset of all finite subsets of N with an added
top element, then the embeddings exp(n) — M form a cocone of the chain, but the
factorization morphism exp(N) — M is not a monomorphism.

5 A construction of weak reflections

5.1. Assumption In the present section A denotes a strongly locally ranked category.
For every infinite cardinal k, A denotes a chosen set of objects of M-rank k closed
under £-quotients and k-small colimits. In particular, one may of course choose A, to
be a set of representatives of all the objects of M-rank k£ up to isomorphism.

Given a set H C M of k-ary morphisms of Ay (considered as a full subcategory of
A), [2] provides a construction of a weak reflection in InjH, which generalizes the Small
Object Argument (see 3.3). However, this does not appear to be sufficient to prove our
Completeness Theorem for the finitary case. The aim of this section is to present a
different, more appropriate construction.

We begin with the case k = w and come back to the general case at the end of this
section.

5.2. Convention (a) Morphisms with domain and codomain in A,, are called petty.
(b) Given a set H of petty morphisms, let

H

denote the closure of H under finite composition and pushout in A,. (That is, H is
the closure of H U {ids; A € A,} under binary composition and pushout along petty
morphisms.)

(c) Since H C morA,, is a set, we can, for every object B of A, index all morphisms
of H with domain B by a set — and that indexing set can be chosen to be independent
of B. That is, we assume that a set T is given and that for every object B € A,

(hs(t): B — B(t); te T} (5.1)

is the set of all morphisms of H with domain B.
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5.3. Diagram Dy, For every object A € A, we define a diagram D4 in A and later
prove that a weak reflection of A in InjH is obtained as a colimit of D4. The domain
D of Dy, independent of A, is the poset of all finite words

e, My, MMy, ..., My...M; (k‘<w)

where € denotes the empty word and each M; is a finite subset of T'. The ordering is as
follows:

My...My<N,...N, iff k<l and M, C Ny, ..., My C N,.

Observe that ¢ is the least element.
We denote the objects D (M ... My) of the diagram D4 by

Ay where M = M ... M,
and if My... My < N;...N; = N, we denote by
6lM,NIAM—H‘lN

the corresponding connecting morphism of D 4. We define these objects and connecting
morphisms by induction on the length k of the word M = M, ... Mj considered.
Case k =0: A, = A.
Induction step: Assume that all objects Ay, with M of length less than or equal to
k and all connecting morphisms between them are defined. For every word M of length
k + 1 denote by
M*< M

the prefix of M of length k, and define the object A,; as a colimit of the following finite
diagram
hag (t)

Ak Ak(t)

QR M*

/.%
A

where K ranges over all words K € D with K < M* and ¢ ranges over the set M.
Thus, Ay is equipped with (the universal cone of) morphisms

ay« - Ay — Apr (connecting morphism of Dy)

and
d¥(t) : Ag(t) — Ay for all K < M*, t € M,
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forming commutative squares

Ak (5.2)

(J,Ky hAK (t)
Anrs Ax(t)
“M% At)
A

This defines the objects Ay, for all words of length k + 1. Next we define connecting
morphisms
aN.M - A N — A M

for all words N < M. If the length of N is at most k, then N < M* and we define
an v through the (already defined) connecting morphism ay y+ by composing it with
the above ap« a. If N has length £ + 1, we define an s as the unique morphism for
which the diagrams

Ak (5.3)

*,N dﬁ(%

Ay

AN*,M an,m/ A ()

(K < N*, t € Niy1)

Am

commute.
It is easy to verify that the morphisms ay s are well-defined and that Dy : D — A
preserves composition and identity morphisms.

5.4. Lemma All connecting morphisms of the diagram D4 lie in H.

Proof We first observe that, given a finite diagram

h;
fi

(iel)
C
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with all h; in H, a colimit

A, _ha B, (5.4)
fil idi (iel)
C T> D

is obtained by first considering pushouts R} of h; along f; and then forming a wide
pushout h of all A} (i € I). Consequently, the connecting morphisms of D, are formed
by repeating one of the following steps: a finite wide pushout of morphisms in H, a
composition of morphisms in H, and a pushout of a morphism in H along a petty
morphism. Since H is closed, by 5.2, under the latter, it is closed under the first one in

the obvious sense, see the construction of a finite wide pushout described in Example
2.8.

5.5. Lemma For every object Ay of the diagram D4 and every morphism h: Ay — B
of H there exists a connecting morphism ay, n @ Ay — An of D4 which factors through

h.
Proof We have M = M; ... M, and h = hga,,(t) for some ¢t € T. Put

N = M, ... Mp{t}.

Then for K = M the definition of d¥(t) (see (5.2)) gives the following commutative
diagram:

h t
Apy — )
idi idﬁ(t)
Av———— An

Consequently,
amMN = dﬁ@) ’ hAM (t>

as required.

5.6. Proposition Let H be a set of petty morphisms with H C M. Then for every
object A € A, a colimit vy : Ay — A (M € D) of the diagram D4 yields a weak
reflection of A in InjH via

ra=".:A4— A

Proof (1) Ais injective w.r.t. H: We want to prove that given h € H and f as follows

B—"s(

|

~

A

then f factors through h. Firstly, since A = colimDy is a directed colimit of H-
morphisms (see 5.4) with H C M, and B has finite M-rank (because B € A,), it follows
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that hom(B, —) preserves the colimit of D4. Thus, there exists a colimit morphism
v~ : Ay — A through which f factors, f =y - f'.

B—l>C

f//
1N X
Az A

N An(t)

aN, M
Y™ J/ B!

Am

By pushing h € H out along f’ we obtain a morphism k' € H. Then by 5.5 there exists
M > N such that ay = h" - b/ for some h” : Ay(t) — Ap. The above commutative
diagram proves that f factors through h.

(2) Let B be injective w.r.t. H. For every morphism f : A — B we define a
compatible cocone f; : Ayy — B of the diagram D4 by induction on

k = the length of the word M

such that f. = f. Then the desired factorization of f is obtained via the (unique)
factorization g : A — B with g-Yum = fu: in fact, g-ra = f.

For k — k + 1, choose for every word N of length k and every ¢t € T" a morphism
fn(t) forming a commutative triangle

hAN(t

)
Ay —="Apn(t)

le 50
B

(recalling that B is H-injective because it is H-injective). Then for every word M of
length k+1 we have a unique factorization f); : Ay; — B making the following diagrams

hag(t)

Ag Ak (t) (5.5)
ag, M* J/ d¥ (t)i
Aupe @M+ M Ay fx(t)
fu
Sarx \
B
commutative for all K < M* and t € My,;.
Let us verify the compatibility
fM = fN M, N for all M S N in D. (56)

The last diagram yields fy« = far - ap+, ar. Therefore, it is sufficient to prove (5.6) for
words M and N of the same length k£ + 1. In order to do that, we will show that

far - d () = fn - apn - di(t), for all K < M* and t € My, 1, (5.7)
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and
v ans v = o amn - ans (5.8)

Concerning (5.7), we have
fu-di(t) = fi(t)
= fn - dX(t), by replacing M by N in (5.5)

= fn-ayun - d5(t), by (5.3).

As for (5.8), we have
I Ay~ M = fur
= fae - aupene
= fn - an«n - ape N+, by replacing M by N in (5.5)

= fN *QAp N AM* M-

5.7. Convention Generalizing the above construction from w to any infinite cardinal
k, we call the morphisms of Ay k-petty. Let us now denote by

Hy,

the closure of H under k-composition (2.10) and pushout in A;. Following 2.18, H,, is
closed under k-wide pushout. We again assume that a set 1" is given such that, for every
object B € Aj, we have an indexing hp(t) : B — B(t), t € T of all morphisms of H
with domain B.

5.8. Diagram D, The poset D of 5.3 is generalized to a poset Dy: Let P.T be the
poset of all subsets of 7' of cardinality < k. The elements of Dy are all functions

M\ — P,T

where A < k is an ordinal, including the case € : 0 — P;T. The ordering is as follows:
for N : X — P,T put

M<N iff A\<)X and M,; CN, forall i < \.

We define, for every A € Ay, the diagram D, : Dy — A. The objects Ds(M) = Ay
and the connecting morphisms ay @ Ay — Ay (M < N) are defined by transfinite
induction on A < k. For A = 0 we have A. = A. The isolated step is precisely as in 5.3,
where for M : A +1 — P,T we denote by M* : A — P,T the domain-restriction. The
limit steps are defined via colimits of smooth chains, see 2.10: if A < k is a limit ordinal
and M : A — P, T is given, then Ay is a colimit of the chain Ay (¢ < X), where M /i
is the domain restriction of M to 4, with the connecting morphisms aps/i ar/; @ Anyi —
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Appyj for all i < j < A The proof that these chains are smooth is an easy transfinite
induction.

It is also easy to see that all the above results hold: A = colimD A is an H-injective
weak reflection of A, and all connecting morphisms of D4 are members of H. Conse-
quently, the proof of the following proposition is analogous to that of 5.6:

5.9. Proposition Let H be a set of k-petty morphisms with H, € M. Then for every
object A € Ay, a colimit yar : Ay — A of Da yields a weak reflection of A in InjH via
ra="v:A4— A.

6 Completeness in strongly locally ranked categories

6.1. Assumption Throughout this section A denotes a strongly locally ranked cat-
egory. We first prove the completeness of the finitary logic. Recall that the finitary
morphisms are those where the domain and codomain are of finite M-rank. Let us
remark that whenever the class M is closed under pushout, then the method of proof
of Theorem 3.6 applies again. However, this excludes examples such as Haus (where
strong monomorphisms are not closed under pushout).

6.2. Theorem The Finitary Injectivity Logic is complete in every strongly locally ranked
category. That is, given a set H of finitary morphisms, every finitary morphism h which
is an injectivity consequence of H is a formal consequence (in the deduction system of

2.4). Shortly: H |= h implies H & h.

6.3. Remark We do not need the full strength of weak local presentation for this result.
We are going to prove the completeness under the following milder assumptions on A:

(i) A is cocomplete and has a left-proper factorization system (€, M);
(ii) A, is a set of objects of finite M-rank, closed under finite colimits and £-quotients;
(iii) M is closed under filtered colimits in A4 (see 4.5 (iv)).

The statement we prove is, then, concerned with petty morphisms (see 5.2). We show
that for every set ‘H of petty morphisms we have

H |= h implies H F h (for all h petty).

The choice of A, as a set of representatives of all objects of finite M-rank yields the
statement of the theorem.

Proof of 6.2 and 6.3 Let then H be a set of petty morphisms, and let
H
denote the closure of ‘H as in 5.2.

(1) We first prove that the theorem holds whenever H C M. Moreover, we will show
that for every petty injectivity consequence H = h we have a formal proof of A from
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assumptions in H such that the use of PUSHOUT is always restricted to pushing out
along petty morphisms.

To prove this, consider, for the given petty injectivity consequence h : A — B of 'H,
the weak reflection 74 : A — A in InjH of 5.6. The object Ais injective w.r.t. h, thus
ra factors through A via some f: B — A:

A B

TA

~ Z

A - IN VAN

Since B € A,, it has finite M-rank, and 5.4 implies that hom(B, —) preserves the colimit
A =colimDy4. Then f factors through one of the colimit morphisms vy : Ay — A:

f=7nv-g forsomeg:B — Ay.

We know that r4 = 7. is the composite of the connecting morphism a, y : A — Ay of
D4 and vy, therefore,

IN Qe N =TA =N -G h.
That is, the colimit morphism vy merges the parallel pair a. y, g-h: A — Ay. Now
the domain A has finite M-rank, thus hom(A, —) also preserves A = colimD 4. Conse-

quently, by (ii) in 3.1(b) the parallel pair is also merged by some connecting morphism
N, M - AN — AM of DAi

CLN,M'CL€7N:CLN7M'g'hZA—>AM.

The left-hand side is simply a., a7, and this is a morphism of H, see Lemma 5.4. Recall
that the definition of H implies that every morphism in H can be proved from H using
Finitary Injectivity Logic in which PUSHOUT is only applied to pushing out along petty
morphisms. Thus, we have a proof of the right-hand side ay as - g - h. The last step is
deriving h from this by CANCELLATION.

(2) Assuming H C &, then we prove that Inj H is a reflective subcategory of 4, and
for every object A € A, the reflection map r4 : A — A is a formal consequence of H
lying in &:

HbEry and r4 € E.

In fact, from H C & it follows that H C & (since & is closed under composition and
pushout). Since A has only finitely many £-quotients, see 4.2, we can form a finite wide
pushout, r4 : A — A, of all E-quotients of A lying in H. Clearly, H F 74, in fact,
ra € H.

The object A s injective w.r.t. H: given h : P — P'in H and f : P — A, form
a pushout A’ of h along f. This is an E-quotient in H, then the same is true for
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R -r4. Consequently, 74 factors through A’ - r4, and the factorization, i : B — A, is an
epimorphism split by A/, thus, f =1i-g- h:

The morphism 74 is a weak reflection: given a morphism u from A to an object C of
Inj M, then u factors through r4 because C' is injective w.r.t. H and r4 € H.

(3) Let H be arbitrary. We begin our proof by defining an increasing sequence of
sets & C & of petty morphisms (i € Ord). For every member f : A — B of H we denote
by f; a reflection of f in Injé&;:

First step: & = {ida; A € A,}. Here Inj& = A, thus fo = f.
Isolated step: For each f € H, let f; = fI'- f! be the (£, M)-factorization of the
reflection f; of f in Inj&;, and put

Ei1=EU{S; feH}

Limat step: £ = U;;&; for limit ordinals j.
We prove that for every ordinal ¢ we have

H & f] for every f € H (6.1)

and

For i =0, (6.1) and (6.2) are trivial (use CANCELLATION for (6.1) and IDENTITY for
(6.2)). Given i > 0, assuming that H I f; for all j <4, with f: A — B in H, that is,
H + &;, we have, by (2), that

H = B (63)

where rp is the reflection of B in Inj&;. Thus, H - f; - r4. Moreover, r4 is an epimor-
phism, therefore the following square

s

S
B

9>

-~
a

oy

is a pushout, which proves H F f; (via PusHoUT). H F f/ then follows by CANCELLA-
TION.
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To prove (6.2), observe that (6.1) implies Inj H C Inj&;, and our previous argument
yields InjH C Inj{f;} rer- Thus, it remains to prove the reverse inclusion: every object
X injective w.r.t. & U {fi} ;o5 is injective w.r.t. H. In fact, given f: A — B in H and
a morphism u : A — X, then since X € Inj&; we have a factorization u = v - r4, and
then the injectivity of X w.r.t. f; yields the desired factorization of u through f.

(4) Since A, is a small category, there exists an ordinal j with
& =&
We want to apply (1) to the category
./4, = II]J gj,
and the set
A=A, NobjA".
Let us verify that A" satisfies the assumptions (i) — (iii) of Remark 6.3 w.r.t.

E=&Nmord and M = MNmorA'.

Ad(i): A’ is cocomplete because it is reflective in 4. Moreover, since the reflection
maps lie in &, it follows that (&', M) is a factorization system: in fact, A’ is closed
under factorization in A. Since £ C Epi(.A), we have & C Epi(A4').

Ad(iil): It is sufficient to prove that A’ is closed under filtered colimits of M’-
morphisms in A. In fact, let D be a filtered diagram in A’ with connecting morphisms
in M, and let ¢, : C; — C (t € T) be a colimit of D in A. Then C' € A, ie., C is
injective w.r.t. f;: A — E for every f € H. This follows from A havmg finite ./\/l rank
(because A € A, implies A € A, due to the fact that 74 : A — A is an E-quotient):
since hom(A —) preserves the colimit of D, every morphism w : A — C factors through
some of the colimit morphisms:

~ 1y
A—F
s
Ci—~C

Since C} € A’ is injective w.r.t. f;, we have a factorization of v through f;, and therefore,
u also factors through f;. This proves C' € A'.
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Ad(ii): Due to the above, every object of A" having a finite M-rank in A has a
finite M'-rank in A’. Also, a finite colimit of objects of A" in A" is a reflection (thus,
an E-quotient) of the corresponding finite colimit in A. Thus, it lies in Aj,.

Next we claim that the set H' = {f;; f € H} fulfils

H M
and H’ is closed under petty identities, composition, and pushouts along petty mor-

phisms. In fact, in the above (£, M)-factorization of f;:

f

N

Sy

TA

-
-
3

oy

NS
o>

fi
NS
D

we know that f] lies in £, = &; and A is injective w.r.t. &;, thus, f7 is a split monomor-
phism (as well as an epimorphism, since & C Epi(A)). Thus, f; is an isomorphism, which
implies f; € M. H' contains id4 for every A € A/, because H contains it; H' is closed
under composition because H is (and f fj is the action of the reflector functor from
A to Inj&;). Finally, H' is closed under pushout along petty morphisms. In fact, to
form a pushout of f; : A— B along wu : A-Cin A = Inj &;, we form a pushout, g, of
f along u-r4 in A, and compose it with the reflection map rp of the codomain D:

A-1-pB
TAL i
. fi L
A—DB

Since C' lies in A’, we can assume r¢ = idg, and the reflection § = rp - g of g in A’ is
then a pushout of f; along u. Now f € H implies g € H, and we have § = g; € H'.

(5) We are ready to prove that if a petty morphism i : A — B is an injectivity
consequence of H, then H + h in A. We write H 4 h for the latter since we work
within two categories: when we apply (1) to A" we use 4 for formal consequence in
A’. Analogously with =4 and =4 . Let h: A — B be a reflection of h in A’, then

H Euh

because every object C' € A’ = Inj&; which is injective w.r.t. H' = {f;} ;o5 is, due to
(6.2), injective w.r.t. H in A. Then C is injective w.r.t. h, and from C € A’ it follows
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easily that C' is injective w.r.t. k. Due to (4) we can apply (1). Therefore,
H 4 h.

We thus have a proof of & from H’ in A’. We modify it to obtain a proof of i from H in
A. We have no problems with a line of the given proof that uses one of the assumptions
fi € H': we know from (6.1) that H 4 f;, and we substitute that line with a formal
proof of f; in A. No problem is, of course, caused by the lines using COMPOSITION or
CANCELLATION. But we need to modify the lines using PUSHOUT because A’ is not
closed under pushout in A. However, a pushout, ¢”, of a morphism ¢ along a petty
morphism v in A’

P—=Q

Q/
is obtained from a pushout, ¢, of g along u in A by composing it with a reflection map
rg of the pushout codomain. Recall that P, P', € A, imply Q' € A,. Thus, we can
replace the line ¢” of the given proof by using PUSHOUT in A (deriving ¢'), followed by
a proof of rg (recall from (6.3) that H F4 r¢o/) and an application of COMPOSITION.
We thus proved that
Hbah.

Since rg-h = h-rq and H 4 r4 (see (6.3)), we conclude H 4 h-r4; by CANCELLATION
then H b4 h.

6.4. Corollary (Compactness Theorem) Let H be a set of finitary morphisms in a
strongly locally ranked category. FEvery finitary morphism which is an injectivity conse-
quence of ‘H is an injectivity consequence of a finite subset of H.

6.5. Remark We proceed by generalizing the completeness result from finitary to k-
ary, where k is an arbitrary infinite cardinal. The k-ary logic, then, deals with k-ary
morphisms (i.e., those having both domain and codomain of M-rank k) and the k-ary
Injectivity Deduction System of 2.18.

6.6. Theorem The k-ary Injectivity Logic is complete in every strongly locally ranked
category. That is, given a set H of k-ary morphisms, then every k-ary morphism which
is an injectivity consequence of H is a formal consequence (in the k-ary Injectivity
Deduction System).

Proof The whole proof is completely analogous to that of Theorem 6.2. As described
in Remark 6.3 we work under the following milder assumptions on the category A:

(i) A is cocomplete and has a left-proper factorization system (€, M);

(ii) Ay is a set of objects of M-rank k, closed under colimits of less than & morphisms
and under £-quotients;
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(iii) M is closed under k-filtered colimits in .A.

The statement we prove is concerned with k-petty morphisms (see 5.7). We denote by
H;, the closure of H as in 5.7. We write H  h for the k-ary Injectivity Logic.

(1) The theorem holds whenever Hy C M. The proof, based on the construction of
a weak reflection A = colimD, of 5.8, is completely analogous to that of (1) in 6.2.

(2) Assuming H C &, then Inj H is a reflective subcategory, and the reflection maps
ra fulfil H 74 and 74 € €. This is analogous to the proof of (2) of 6.2.

(3) The definition of &; is precisely as in the proof of 6.2.

(4) For the first ordinal j with & = &1 the category A" = Inj &; fulfils the assump-
tions (i)-(iii) above, and the set H' = {f;; f € H} fulfils H' =H' C M.

(5) The theorem is then proved by applying (1) to A’ and H': we get H' F h in A’
and we derive H - h in A precisely as in the proof of 6.2.

6.7. Corollary The Injectivity Logic is sound and complete. That is, given a set H of
morphisms of a strongly locally ranked category, then the consequences of H are precisely
the formal consequences of H (in the Injectivity Deduction System). Shortly:

HERh iff HEh (for all morphisms h)

In fact, soundness was proved in Section 2. Completeness follows from Theorem 6.6:
since H is a set, and since every object of A has an M-rank, see 4.5(ii), there exists k
such that all domains and codomains of morphisms of H U {h} have M-rank k.

7 Counterexamples

7.1. Example In “nice” categories which are not strongly locally ranked the complete-
ness theorem can fail. Here we refer to F of the Deduction System 2.13 (and the logic
concerning arbitrary morphisms). We denote by

CPO(1)

the category of unary algebras defined on C'PO’s. Recall that a C'PO is a poset with
directed joins, and the corresponding category, CPO, has as morphisms the continuous
functions (i.e., those preserving directed joins). The category CPO(1) has as objects
the triples (A,C,«) where (A,C) is a CPO and o : A — A is a unary operation.
Morphisms are the continuous algebra homomorphisms.

First let us observe that the assumption of cocompleteness is fulfilled.

Lemma CPO(1) is cocomplete.

Proof The category CPO is easily seen to be cocomplete. The category CPO(1)* of
partial unary algebras on C'PO’s (defined as above except that we allow a: A" — A for
any A’ C A) is monotopological over CPO, see [3], since for every monosource

fi i (A,C) — (A;,C,,q) (1 € I) we define a partial operation o on A at an element
x € Aiff ; is defined at f;(x) for every ¢, and then

ar =y iff fi(y) = a;(fi(z)) for allie I.
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Consequently, CPO(1)* is cocomplete by [3], 21.42 and 21.15. Further, CPO(1) is a
full reflective subcategory of CPO(1)*: form a free unary algebra on the given partial
unary algebra, ignoring the ordering, and then extend the ordering trivially (i.e., the
new elements are pairwise incomparable, and incomparable with any of the original
elements). Thus, CPO(1) is cocomplete.

We will find morphisms hy, he and k of CPO(1) with

{hl, hQ} ): k  but {hl, hg} )7Zk?

(i) We define a morphism h; that expresses, by injectivity, the condition
(h1) rCax foral ze A
Let = denote the discrete order on the set N of natural numbers, and C that order en-
larged by 0 C 1. Let s : N — N be the successor operation. Then

hi=1id: (N,=,s) — (N,C,s)

is a morphism such that an algebra is injective w.r.t. hy iff it fulfils (h1) above.
(ii) The condition
(h2) A#0D

is expressed by the injectivity w.r.t.
hy: 0 — (N,=,5)

where () is the empty (initial) algebra. The following morphism k expresses the existence
of a fixed point of a:
E:0—1

where 1 is a one-element (terminal) algebra.
Proposition {hy, he} E k but {hy, ha} t/ k.

Proof To prove {hi, ha} = k, let (A,C,a) be injective w.r.t. hy and hg, i.e., fulfill
z C a(z) and be nonempty. Define a smooth (see 2.10) chain (a;)icora in (A,C) by
transfinite induction: ag € A is any chosen element. Given a; put a;11 = a(a;); we know
that a; C a;41. Limit steps are given by (directed) joins, a; = | |;_; a;. Since A is small,
there exist ¢ with a; = a1, that is, a; is a fixed point of a. Thus, A is injective w.r.t.
k.

To prove {hy, ho} I/ k, it is sufficient to find an extension K of the category CPO(1)
in which CPO(1) is closed under colimits (therefore I has the same meaning in CPO(1)
and in K) and in which there exists an object which is injective w.r.t. h; and hs but not
w.r.t. k. Thus k£ cannot be proved in K from h;, hsy; consequently it cannot be proved
in CPO(1) cither.

We define K by adding a single new object K to CPO(1). The only morphism with
domain K is idg. For every algebra (A, C, ) of CPO(1) we call a function f : A — Ord
a coloring of A provided that it is continuous and fulfils f(a(x)) = f(x)+1 for all x € A.
The hom-object of A and K in K is defined to be the class of all colorings of A. The
composition in K is defined “naturally”: given a continuous homomorphism
h:(AC,a) — (B, <, ), then for every coloring f : B — Ord of B we have a coloring
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f+h:A— Ordof A. The category CPO(1) is a full subcategory of K closed under
(small) colimits. In fact, given a colimit cocone a; : A; — A (i € I) in CPO(1), then
for every compatible cocone of colorings f; : A; — Ord (i € I) there exists an ordinal
j such that all ordinals in U fi[A;] are smaller than j. Let B = (57,<,3) be the
object of CPO(1) where < is the usual linear ordering of j* (the poset of all ordinals
smaller or equal to j), and 3 is the successor map except 5(j) = j. Then the codomain
restriction f! of each f; defines a continuous homomorphism f/ : A; — B, and we obtain
a compatible cocone (f!);e; for our diagram. The unique continuous homomorphism
g: A — B with g-a; = f! yields, by composing it with the inclusion j© — Ord, a
coloring f : A — Ord with f-a; = f; (1 € I).

It is obvious that K is injective w.r.t. h;: every coloring of (N, =, s) is also a coloring
of (N,C,s). And K is injective w.r.t. hy (because the inclusion N < Ord is a coloring
of (N,=,s)). But K is not injective w.r.t. k, since 1 has no coloring.

7.2. Example None of the deduction rules of the Finitary Injectivity Deduction System
can be left out. For each of them we present an example of a finite complete lattice A
in which the reduced deduction system is not complete (for finitary morphisms).

(1) IDENTITY The deduction system CANCELLATION, COMPOSITION and PUSHOUT
is not complete because nothing can be derived from the empty set of assumptions,
although 0 = id 4.

(2) CANCELLATION In the poset 9
A: 1
0

the only object injective w.r.t. {0 — 2} is 2, thus, we see that {0 — 2} = 0 — 1.
However, 0 — 1 cannot be derived from 0 — 2 by means of IDENTITY, COMPOSITION
and PUSHOUT because the set of all morphisms of A except 0 — 1 is closed under
composition and pushout.
(3) coMPOSITION In A above we clearly have {0 — 1,1 — 2} = 0 — 2. However,
the set of all morphisms except 0 — 2 is closed under left cancellation and pushout.
(4) pusHoOUT In the poset 1

0
we have {0 — a} = b — 1, but we cannot derive b — 1 from 0 — a using IDENTITY,
COMPOSITION and CANCELLATION because the set of all morphisms except b — 1 is
closed under composition and cancellation.

7.3. Example Here we demonstrate that in the Finitary Injectivity Logic we cannot
restrict the statement of the completeness theorem from the given strongly locally ranked
category A to its full subcategory A, on all objects of finite rank: although the relation
F works entirely in 4, the relation = does not.

More precisely, let H |, h mean that every H-injective object of finite M-rank is
also h-injective. And let I, be the formal consequence w.r.t. Deduction System 2.4.
Then the implication
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H =, h implies H F, h

does NOT hold in general for sets of finitary morphisms.

Indeed, let A = Gra be the category of graphs, i.e., binary relational structures
(A,R), R C A x A, and the usual graph homomorphisms. Recall that Gra is locally
finitely presentable, and the finitely presentable objects are precisely the finite graphs.
Let us call a graph a clique if R = A x A— A,4. Denote by C,, a clique of cardinality n,
and let 0 be the initial object (empty graph).

For the set

H= {0 - Cn}neN

we have the following property:
every finite H-injective graph G has a loop (i.e., a morphism from 1 to G).
In fact, if G has cardinality less than n and is injective w.r.t. 0 — C,,, then we have
a homomorphism f : C;, — G. Since f cannot be one-to-one, there exist z # y in C,
with f(z) = f(y) — and the last element defines a loop of G because (z,y) is an edge of
C,,.. Hence
HE, (0—1).

However, 0 — 1 cannot be proved in the Finitary Injectivity Logic. In fact, the graph
¢=]Jc.
neN

demonstrates that H = (0 — 1).
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