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Abstract—The increasing complexity and density of modern
networks necessitate advanced, AI-driven solutions to manage
traffic efficiently and maintain high-quality service. In this paper,
we present a novel reinforcement learning (RL) framework
designed to optimize handover parameters for load balancing in
cellular networks. Our framework adopts a hierarchical multi-
agent RL approach. Closely adjacent cells (a.k.a., cluster) are
controlled by cluster-level agents, whereas inter-cluster parame-
ters are controlled by a network-level agent. By intricate design
of state spaces and agent communication, both cluster-level and
network-level agents work collaboratively to enhance network
performance in terms of throughput and coverage. This method
reduces the action and state spaces for each agent, facilitating
faster learning, scalable network-wide control, and more efficient
decision-making. Our simulation results demonstrate significant
improvements in downlink throughput with respect to fully
decentralized agents. Our approach incurs negligible throughput
loss when compared to a fully centralized agent with full
knowledge of the entire network. Our approach not only achieves
scalable load balancing with minimal overhead but also allows
for customizable reward functions tailored to different network
needs.

Index Terms—Reinforcement Learning, Cellular Networks,
Self-Optimized Networks, Mobility Load Balancing

I. INTRODUCTION

In the continuous evolving of cellular communications net-
works, enhancing the efficiency and scalability of network
management has become of paramount importance. With
the advancement of 5G networks and the anticipation of
6G and beyond future networks, the complexity and density
of eNodeBs (eNBs) have significantly increased. Efficiently
managing these elements, particularly in terms of mobility load
management, is critical for maintaining quality of service and
optimizing network performance.

From another perspective, the future of cellular networks is
envisioned to be AI-native, that is integrating advanced artifi-
cial intelligence and machine learning techniques at their core.
As network complexity continues to escalate with the rollout
of 5G and the approaching 6G era, traditional manual network
management methods are becoming increasingly inefficient.
AI-native networks promise to revolutionize the way cellu-
lar systems are managed by enabling real-time, autonomous
decision-making processes that can adapt to dynamic network
conditions. These networks adopt AI-based models to optimize
resource allocation and mitigate potential issues before they

impact service quality. This shift towards AI-driven manage-
ment is essential to meet the growing demands for higher data
rates, lower latencies, and enhanced user experiences.

In this work, we consider the problem of mobility load
management in cellular networks. Specifically, we aim to
enhance the downlink throughput, optimize resource block
utilization, and minimize the number of uncovered users
(i.e., enhance network coverage). Our previous works in [1]–
[5] have addressed the load balancing challenge in cellular
networks using various techniques, however, the proposed
approaches had inherent limitations in scaling efficiently. This
is due to the nature of the centralized agent that controls all
cells concurrently. This motivates our efforts to investigate a
scalable approach that 1) has a manageable dimensionality
of state and/or action spaces, 2) Performs mobility load
management with negligible performance loss compared to a
centralized agent that may be challenging to implement, and
3) has a limited communication overhead between agents.

To that end, we propose a novel hierarchical multi-agent
reinforcement learning (RL) framework for mobility load
management in cellular networks by dynamically adjusting
the relative cell individual offset (CIOs). CIOs control the
handover thresholds between eNBs, thus achieving a more
adaptive and efficient handover process. In this framework, the
network is clustered such that each cluster comprises multiple
adjacent eNBs. The network is divided into a number of
clusters to balance the load on central agents and minimize
action latency. There exist two levels (i.e., hierarchical) of
RL agents, namely, the cluster-level agents, and the network-
level agent. The proposed framework introduces a multi-
agent RL approach, where both cluster-level and centralized
agents collaborate to optimize the network’s performance. We
design the state and action spaces of all agents in addition to
identifying a flexible reward function that fits various network
needs. Moreover, we pinpoint the intra- and inter-cluster CIOs
as sufficient information that can be communicated between
agents to boost their performance.

Our proposed hierarchical multi-agent architecture signifi-
cantly reduces the action space and state space for each agent,
facilitating faster and more efficient learning and decision-
making processes. This in turn addresses the aforementioned
scalability issues in [1]–[5], offering a robust solution capable
of managing the increasing complexity and density of modern



cellular networks.
The results demonstrate the efficacy of the RL-based ap-

proach in improving network performance compared to fully
decentralized methods as in [6]. Our approach incurs neg-
ligible loss compared to traditional centralized agents as in
[1], which may be infeasible to implement in hyper-dense
networks.

A. Related Work

Load-balancing techniques have been extensively explored
in the literature. In works such as [7] and [1], the authors
designed an RL framework to optimize cell parameters for
balancing traffic loads across cells. These studies focused on
controlling the CIOs of neighboring cells, prompting cell-edge
users to hand over from congested cells to those with lighter
loads. Additionally, [2] and [3] introduced an RL agent that
manages both eNB transmission power and CIOs to achieve
traffic load balancing, aiming to maximize downlink sum
throughput while minimizing the number of uncovered users.

From another perspective, [8] explores a deep RL approach
for coordinating inter-cell interference, specifically controlling
power in cellular networks to maximize the network’s sum
rate. Furthermore, [9] presents an RL-based downlink schedul-
ing approach that autonomously manages active traffic flows.

Works like [1]–[4], [7] have utilized RL to achieve load
balancing in networks, ultimately aiming to maximize sum
throughput. [10] provides a comprehensive survey on the
applications of deep RL in cellular networks.

Proposing multi-agent models also exists in literature. For
instance, in [6], the authors propose an approach such that each
cell has a decentralized agent to learn handover parameters and
antenna tilt angle. For a more comprehensive view, the study
in [11] provides a detailed exploration of multi-agent RL and
its related fields and the study in [12] has a narrower focus
on surveying multi-agent RL for communication networks.
Another survey is presented in [13] that reviews basic methods
and use cases for multi-agent RL and outlines the trending
research areas and their limitations.

B. Paper Contribution

The contributions of this paper can be summarized as
follows:

• An RL-based framework that optimizes handover param-
eters to achieve load balancing across cellular networks.
The framework efficiently manages the distribution of
users among eNBs to prevent congestion and underuti-
lization.

• A hierarchical multi-agent RL approach where both
cluster-level and centralized agents collaborate. This ap-
proach reduces the action space and state space for each
agent, facilitating faster learning and decision-making
processes with negligible throughput loss compared to
a fully centralized agent, which may be challenging to
implement in realistic networks.

• The proposed framework shows scalability with minimal
overhead by sharing limited information between agents.

Fig. 1. cellular system clusters

Specifically, the proposed scheme only shares intra- and
inter-cluster CIOs between the cluster-level and network-
level agents. It also allows for the customization of differ-
ent rewards for each agent, enabling tailored optimization
goals for various operational scenarios.

• Employing a realistic simulation environment using the
NS3 simulator and the SUMO mobility model. This
setup ensures that the proposed framework is evaluated
under practical conditions, reflecting real-world network
scenarios.

II. SYSTEM MODEL

We consider a cellular system (see Fig.1) that serves U
user equipment (UE) in total. The cellular system consists of
N base stations (a.k.a., eNBs in 4G or gNBs in 5G networks).
In this work, we assume that the cellular network is divided
into M clusters to facilitate network-control scalability. In the
sequel, we present the system components in detail.

A. Base Stations (eNBs)

Each eNB sends its downlink transmission with power Pt

dBm. The nth eNB is allocated a total bandwidth of Bn

Hz. We assume that our cellular system operates with an
OFDM-based air interface (which is the case in 4G and 5G,
and envisioned for 6G) [14], [15]. Specifically, the eNB allo-
cates transmission resources in the form of physical resource
blocks (PRBs), each having a bandwidth of BPRB Hz (e.g.,
BPRB = 180 KHz in LTE [16].

The nth eNB serves Un UEs. The ith UE belonging to
the nth eNB is allocated Ki,n PRBs. Consequently, the eNB
utilization ρn, i.e., the ratio of the total PRBs required to serve
the attached users to the total PRBs that the eNB can offer,
can be written as:

ρn =

∑Un

i=1 Ki,n

Bn/BPRB
(1)

The utilization ρn measures the congestion level of the cell.
Thus, ρn ≪ 1 represents an under-utilized cell, while ρn > 1
is over-utilized (i.e., infeasible resource allocation).

Moreover, the cells are endowed with settable cell individual
offsets (CIOs). A CIO is an offset power level that is used to
control the users’ handover procedure. Specifically, a positive



CIO θi→j ∈ [θmin, θmax] dB implies that the RSRP from ith
cell appears stronger than the RSRP from the jth cell by θi→j

dB. This discourages users in the ith cell from executing the
handover procedure to the jth cell, and vice versa [17].

B. User Equipment (UEs)

The kth user moves with a velocity vk m/s. Periodically
each UE measures the signal-to-interference-plus-noise-ratio
(SINR) of nearby eNB and sends an attachment request to
eNB with the highest measured SINR.

The kth UE regularly searches for a better cell by measuring
the reference signal received power (RSRP). Specifically, the
RSRP measurements initiate a handover procedure for the kth
user from the mth cell from the nth cell if the following
criterion is true [17]:

RSRPm + θm→n > Hys + θn→m + RSRPn (2)

where RSRPi is the measured RSRP from the ith cell, Hys
is the hysteresis power level used to reduce the ping-pong
handover effects, and θi→j corresponds to the relative CIO
between the mth and the nth cells.

Moreover, the kth UE reports the channel quality indicator
(CQI), denoted by ϕk. CQI is a discrete measure of the channel
quality such that ϕk ∈ {0, 1, · · · , 15}. Specifically, ϕk = 0
means that the kth UE is out of coverage, while higher CQI
indicates a more favorable channel quality [18].

C. Hierarchical Control Agents and Clustering

In this work, we assume that the N cells of the cel-
lular network are divided into M clusters. The mobility
load management is performed using a hierarchical control
agents. Specifically, each cluster is managed by a cluster-level
control agent. The cluster-level agent has access to all key
performance indicators (KPIs) of all cells belonging to such a
cluster. In addition, the cluster-level agent manages the control
knobs within the cluster (intra-cluster controls). The cluster-
level agent cannot influence controls beyond the cluster or
inter-cluster controls.

On the other hand, the cellular network is equipped with
a network-level control agent that has access to aggregate
KPIs from all clusters. The network-level agent manages inter-
cluster controls only. Moreover, we assume that there exists
a backhaul network connecting the cluster-level agents with
the network-level agent that can convey low-rate inter-cluster
information.

In this work, we assume that the way the network is
clustered is chosen based on their physical location where
nearby base stations are clustered together1.

III. PROBLEM FORMULATION

In this paper, we aim to design both cluster-level agents
and network-level agent for mobility load management of the
cellular network such that they simultaneously 1) maximize
the long-term average sum throughput of the cellular network,

1Exploring other clustering approaches is an interesting future direction of
this work that is outside the scope of this paper.

and 2) minimize the probability of having out-of-coverage
users.

Denote the instantaneous throughput at time t = 0, 1, 2, · · ·
of the nth cell by Rn(t). Consequently, our objective is to
maximize the following scalarized multi-objective function:

lim
L→∞

E

[
L∑

t=1

ηt

(
N∑

n=1

Rn(t)−λR̄(t)

U∑
u=1

1(ϕu(t)=0)

)]
(3)

where η is the discount factor, which signifies the weight of
future decisions, λ is the penalty factor of the throughput that
signifies how important the coverage requirement compared to
the throughput metric, and R̄(t) is the average user throughput,
i.e., R̄(t) = 1

U

∑N
n=1 Rn(t). Motivated by previous works in

[1]–[3], we employ the reinforcement learning (RL) technique
for mobility load management.

The aforementioned objective is maximized subject to the
following design criteria (in addition to the hierarchical clus-
tering structure in Section II-C): 1) The inter-cluster informa-
tion exchanged through the backhaul links is limited. This is
motivated by the need to have manageable state dimensionality
to facilitate scalable learning, and 2) The state dimensionality
of the network-level agent is no more than that of its counter-
part of the cluster-level agents. In the following section, we
present our hierarchical Multi-Agent Reinforcement Learning
Framework in detail.

IV. HIERARCHICAL MULTI-AGENT REINFORCEMENT
LEARNING FRAMEWORK

In this section, we start by describing our proposed hier-
archical multi-agent RL framework. We give an overview of
the approach followed by the details of the state space, action
space, and reward function for all agents.

A. Overview of the Proposed Approach

The scalarized multi-objective optimization problem in Sec-
tion III is recast as a multi-agent RL problem. Specifically,
the CIOs belonging to one cluster (intra-cluster CIOs) are
controlled by the cluster-level RL agent, while the CIOs
within multiple clusters (inter-cluster CIOs) are controlled via
the network-level RL agent. This reduces the action space
dimensionality of the agents, which in turn enables scalable
extension of [1] without inflating the convergence interval.

To reduce the state space dimensionality (to enhance con-
vergence rate), the cluster-level agent observes all KPIs be-
longing to the cluster. In addition, the cluster-level agent
observes the inter-cluster CIO from the network-level agent.
The network-level agent, however, observes aggregate KPIs
from all clusters, i.e., it observes a simplified state of the
overall network. The network-level agent observes the intra-
cluster CIO values from all clusters. Thus, we adopt the CIO
values as communication messages between the agents (see
Fig. 2).

In this work, we choose the Twin Delayed Deep Deter-
ministic Policy Gradient (TD3) implementation for all RL
agents (cluster-level and network-level). TD3 is an actor-
critic RL agent, which is a direct successor of the DDPG



Fig. 2. RL Model

agent. TD3 works with continuous action spaces, reduces the
over-estimation effects of the DDPG, and shows more stable
convergence [19].

B. State Space

The state of the agent is a compact representation of the
cellular network at a given instant. The agent chooses its action
as a function of the observed state space. In this work, we
use readily available KPIs, which are periodically reported
in the cellular network as in [1]. This is in addition to the
communicated CIO values.

1) Cluster-Level Agents: For the cluster-level agents, we
choose the following KPIs for the state. These KPIs corre-
spond to cells’ information within the cluster only. The KPIs
themselves remain exactly as in [1]. Specifically,

• Cell total downlink (DL) throughput: This is the sum
of all users’ downlink throughput in each cell. Denote
R

[ℓ]
n (t) as the total downlink throughput of the nth cell

belonging to the ℓth cluster at time t, then, R
[ℓ]
n (t) =∑Un

un=1 Run
(t). The following vector represents the total

throughput from all cells of the ℓth cluster:

R[ℓ](t) =
[
R

[ℓ]
1 (t) R

[ℓ]
2 (t) · · · R

[ℓ]
Nℓ

(t)
]

(4)

where Nℓ represents the total number of the cells in the
ℓth cluster.

• Resource block utilization (RBU): It is a vector consisting
of the PRB utilization ρ

[ℓ]
n at time t (see equation (1)) of

the nth cell belonging to ℓth cluster, i.e.,

ρ[ℓ](t) =
[
ρ
[ℓ]
1 (t) ρ

[ℓ]
2 (t) · · · ρ

[ℓ]
Nℓ

(t)
]

(5)

The RBU measures the level of congestion in the cells
belonging to a certain cluster.

• Number of connected users: It is a vector corresponding
to the number of UEs connected to eNBs (i.e have been
allocated a DL traffic channel) within the ℓth cluster at
time t, which is denoted by U[ℓ](t),

U[ℓ](t) =
[
U

[ℓ]
1 (t) U

[ℓ]
2 (t) · · · U

[ℓ]
Nℓ

(t)
]

(6)

U[ℓ](t) and R[ℓ](t) vectors signify the average throughput
per UE in each cell.

• Modulation and coding scheme (MCS) penetration: It is
a matrix M[ℓ](t), whose rows correspond to the lower µ
MCS schemes, and columns denote the eNB within the
cluster, i.e., the element M [ℓ]

j,n(t) denotes the fraction of
UEs employing the jth MCS in the jth cell belonging
to the ℓth cluster at time t. MCS penetration reflects the
average channel quality of the UEs.

• Signaling from the network-level agent: In addition, the
cluster-level agent receives the inter-cluster CIO values
from the network-level agent, i.e., it receives a vector
Θ(t) = [θi→j : i ∈ Cℓ1 , j ∈ Cℓ2 , ℓ1 ̸= ℓ2], where Cℓ is
the set of cells belonging to the ℓth cluster.

Consequently, the state of the cluster-level agent is a con-
catenation of all these vectors, i.e.,

S[ℓ](t) =
[
R[ℓ](t) ρ[ℓ](t) U[ℓ](t) vec

(
M[ℓ](t)

)
Θ(t)

]
(7)

where vec(·) denotes vectorization of matrix operation.
2) Network-Level Agent: The network-level agent bases its

action on a state similar to the cluster-level agents with two
major differences. First, the network-level agent receives the
aggregate KPIs of the cluster and not the individual cells’
KPIs. Specifically, each cluster passes the average KPIs across
all eNBs belonging to the cluster. Consequently, the average
DL throughput of the cluster vector R(t) is given by:

R(t) =

[∑Ni

ni=1 R
[i]
ni(t)

Ni
: i = 1, 2, · · · ,M

]
(8)

i.e., the ℓth cluster passes the average value of R[ℓ](t) to the
network-level agent. Similarly, the the RBU of the cluster
vector ρ(t), and the number of connected users of the cluster
are given by:

ρ(t) =

[∑Ni

ni=1 ρ
[i]
ni(t)

Ni
: i = 1, 2, · · · ,M

]
(9)

U(t) =

[∑Ni

ni=1 U
[i]
ni (t)

Ni
: i = 1, 2, · · · ,M

]
(10)

For the MCS penetration, we average the columns of the ma-
trix, i.e., the element Mj,ℓ(t) of the matrix M(t) = [Mj,ℓ(t)]
where j = 1, · · · , µ and ℓ = 1, · · · ,M is given by:

Mj,ℓ(t) =

∑Nℓ

nℓ=1 Mj,nℓ
(t)

Nℓ
(11)

Therfore, the network-level agent is essentially dealing with
the cluster’s KPIs in the same way the cluster-level agent is
dealing with cell’s KPIs. This implies that the state space



dimensionality of the network-level agent is of a similar di-
mensionality of the cluster-level agent, which in turn facilitates
scalable learning.

The network-level agent receives the intra-cluster CIO val-
ues from all clusters as side information to the KPIs, i.e., the
ℓth cluster-level agent sends the vector Θ[ℓ] = [θi→j : i, j ∈
Cℓ]. Thus, the network-level agent adds the following vector
to its state representation

Θ̃(t) =
[
Θ[1](t) Θ[2](t) · · · Θ[M ](t)

]
(12)

Therfore, the state of the network-level agent S(t) is as
follows:

S(t) =
[
R(t) ρ(t) U(t) vec (M(t)) Θ̃(t)

]
(13)

C. Action Space

The available actions of all agents are the relative CIOs
(θi→j : i, j = 1, 2, · · · , N, i ̸= j). The CIO values are
picked from a continuous range [θmin, θmax] dB. The CIO
value controls the handover condition between adjacent cells.

1) Cluster-Level Agents: The ℓth cluster-level agent con-
trols the relative CIOs between two cells (intra-cluster CIOs),
which both belong to the cluster, hence, the action of the ℓth
agent is given by:

A[ℓ](t) = [θi→j : i ̸= j, i, j ∈ Cℓ] (14)

2) Network-Level Agent: The network-level agent controls
the relative CIOs between cells belonging to different clusters
(inter-cluster CIOs). Specifically, the action of the network-
level agent A(t):

A(t) = [θi→j : i ̸= j, i ∈ Cℓ1 , j ∈ Cℓ2 , ℓ1 ̸= ℓ2] (15)

D. Reward Function

The reward function R(t) of an RL agent assesses the
quality of the agent’s applied action. In this work, we adopt
the penalized throughput as a reward function that reflects the
throughput and coverage in a unified metric as in [3]. The main
difference from [20] is how this reward function is defined for
the cluster-level and the network-level agents as we show next.

1) Cluster-Level Agents: The cluster-level agent calculates
its reward function based only on the penalized throughput of
the cells belonging to the cluster. Hence, the reward function
for the ℓth agent R[ℓ](t) is given by,

R[ℓ](t) =

Nℓ∑
ni=1

R[ℓ]
ni
(t)− λR̄[ℓ](t)

Nℓ∑
ni=1

U [ℓ]
ni∑

j=1

1(ϕj = 0) (16)

where R̄[ℓ](t) =
∑Nℓ

ni=1 R[ℓ]
ni

(t)∑Nℓ
ni=1 U

[ℓ]
ni

(t)
is the average user’s throughput

in the ℓth cluster, i.e., the cluster-level agent only needs local
reward information to adapt its RL parameters. This in turn
promotes the scalability of our scheme.

2) Network-Level Agent: The reward function for the
network-level agent is calculated with respect to the entire

TABLE I
SIMULATION PARAMETERS

Parameter Value
Bandwidth(Bn) 5 MHz

eNB Transmission power (Pt) 30 dBm
eNB antenna height 30 m
eNB antenna pattern omni
UE antenna height 1.5 - 2 m

Path loss model Cost Hata
Uncovered Users penalty 2

Training Steps 100,000
Steps per Episodes 250

Step Time 0.2 seconds
MCS µ {0-10}

network, i.e.,

R(t) =

M∑
ℓ=1

Nℓ∑
ni=1

R[ℓ]
ni
(t)− λR̄(t)

U∑
u=1

1(ϕj = 0) (17)

V. SIMULATION AND NUMERICAL RESULTS

In this section, we present the simulation parameters used,
the evaluation scenario, and the impact of the proposed ap-
proach on the network performance compared to the central-
ized/decentralized approaches.

A. Simulation Setup and Agent Implementation

In this work, we realize the network simulation using the
NS3 simulator. NS3 is an open-source discrete-event network
simulator. The NS3 includes a fully operational LTE module,
which is a software library, that allows the simulation of
LTE networks. We have extended the LTE module so that it
supports controlling the relative CIO values between different
cells. To simulate realistic users’ mobility, we use Simulation
of Urban Mobility (SUMO). SUMO imports accurately emu-
lated environments from factual maps such as the Open Street
Map (OSM). This imported environment considers the existing
road structure, number of lanes, traffic light rules, buildings,
· · · , etc [21].

We implement the RL agents (specifically, the TD3 agents)
using readily available Python implementations of stable-
baselines 3 libraries [22]. The communication interface be-
tween the Python agents and the NS3 network simulator is
realized using NS3gym [23]. Specifically, agents send their
selected actions to the NS3 simulator and receive the cal-
culated reward from the NS3 simulator using NS3gym. For
implementation details and source code, see [24].

As for the simulation scenario, we choose an urban area
of 900m × 1800m from the Fifth Settlement neighborhood
in Egypt. The aforementioned area is covered by 6 eNBs.
The exact positions of the eNBs were provided by one of the
major 4G network operators in Egypt. The mobile UEs in this
scenario are either vehicles or pedestrians. The pedestrians
walk at a speed range between 0 − 3 m/s. The vehicles’



Fig. 3. Throughput performance of our proposed approach compared with
benchmarks.

mobility characteristics, i.e., acceleration, deceleration, speed
factor, and speed deviation, are taken to emulate the realistic
behavior of the vehicles. We randomly distribute those UEs on
the available streets and pedestrian lanes at the beginning of
the simulation. Afterward, each UE has a random trip from a
source to a destination street during the simulation time. UEs
are assumed to have a full buffer traffic model, i.e., the users
are always active. The unlimited demand of the users facilitates
investigating network congestion with a lower number of UEs.
The simulation parameters corresponding to our scenario are
summarized in Table I.

B. Numerical Results

In this section, we present our numerical results concerning
the performance of our proposed hierarchical multi-agent
framework when applied to the aforementioned scenario. Our
approach is compared against three benchmarks, namely: 1)
Fully centralized agent that has access to the entire network
KPIs and controls all relative CIO values of all eNBs [1], 2)
Fully decentralized agents, each only deals with the KPIs and
CIO values of only one cell with no communication across
agents [6], and 3) Zero-CIO baseline, where the CIO values
are all set to zero with no control from any of the agents.
Furthermore, we highlight the importance of sharing CIO
information between agents and the effect of the throughput
penalty on the number of uncovered users within a cluster and
the overall network.

1) Throughput Performance: First, we compare the
throughput performance of our proposed approach compared
to the aforementioned benchmarks. Fig. 3 shows that our
proposed approach significantly outperforms the zero-CIO
benchmark by 10.3% and the fully decentralized benchmark
by 6%. Nevertheless, the fully centralized agent slightly
outperforms our proposal by a mere 1.72%. This implies
that there is a minor reduction in throughput due to having
limited information for the hierarchical agents. The loss is
expected as the cluster-level agents solve local optimization
problems as opposed to the joint optimization problem that
the centralized agent is solving. Nevertheless, the advantage
of such an approach lies in its scalability compared to the
centralized agent which becomes increasingly challenging to
implement with increasing the number of eNBs.

Fig. 4. Throughput per cluster

Fig. 5. Higher Agent Effect (Clusters)

Fig. 4 shows the individual throughput of each cluster
during the learning phase. Interestingly, Fig. 4 shows that both
clusters’ throughput has increased. Specifically, the throughput
enhancement cannot be derived from one successful agent, i.e.,
all agents work in unison to maximize the total throughput of
the entire network.

2) Effect of the Presence of Network-Level Agent: We
investigate the effects of including a network-level agent
as opposed to using only cluster-level agents. We fix the
number of training episodes to 50 and observe the agents’
convergence behavior. Fig. 5 and Fig. 6 show that the inclusion
of a network-level agent results in agents’ converging in 15
episodes, while the throughput corresponding to the decen-
tralized agents fluctuates even at the 50 episode training span.
This maybe due to the fact that the network-level agent is
compensating for the greedy actions of the cluster-level agents
to reach a stable learning. On the other hand, compared to
the fully-centralized agent in Fig. 6, the proposed hierarchical
approach exhibits faster convergence as well. This is due
to the fact that the state and action spaces of the agents
in our approach are much smaller, which facilitates faster
convergence.

3) Effect of Throughput Penalty: Next, we investigate the
effect of the penalty factor λ on the throughput of the network.
Fig. 7 shows that as λ increases, the overall throughput of
the network decreases. This is because, with higher values
for λ, the system tends to favor maximizing coverage at the
cost of increasing user throughput to avoid incurring extreme
losses due to the presence of uncovered users. This indicates
an interesting tradeoff between throughput and coverage. The
tradeoff can be controlled using the hyper-parameter λ. The
network operator can set λ according to the current network



Fig. 6. Higher Agent Effect (Total)

Fig. 7. Total Throughput different λ

needs.

VI. CONCLUSION

The primary motive for this study was to introduce a
scalable approach for cellular network management using RL
framework. We aim to enhance the throughput and coverage
of the cellular network by optimizing handover parameters
(a.k.a., CIO values) in a scalable fashion with minimal
communication overhead. We proposed a hierarchical multi-
agent approach, where cluster-level agents control intra-cluster
CIOs, and network-level agent controls inter-cluster CIOs.
We deduct that communicating CIO values is a sufficient
communication overhead between agents. Our results show
the following: 1) Our proposed approach outperforms fully de-
centralized agents with no network-level agent and no agents’
communication, and 2) Our scheme is extremely scalable
with respect to a centralized agent that observes all KPIs
of the network and jointly controls all CIOs. This can be
achieved with a negligible throughput reduction with respect
to the fully centralized agent. Moreover, this approach enables
customization for different rewards for each agent allowing
different optimization goals on the cluster level for different
operation scenarios.
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