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Abstract—This paper explores the Age of Information (AoI)
in IoT networks, aiming to minimize the average AoI for real-
time applications. We employ a spatiotemporal model with a
heterogeneous Poisson field (HPF) of interferers and an absorbing
Markov chain (AMC) to quantify AoI dynamics. This model
specifically examines the effects of packet segmentation (i.e., rate
adaptation) to maintain a stable rate in the presence of IoT
interference. Unlike previous works focused on preemptive and
non-preemptive schemes, we propose a novel hybrid k-preemptive
transmission scheme. This scheme dynamically decides whether
to continue or preempt transmission based on the number of
delivered segments, addressing interference issues. Simulation
results demonstrate the superiority of the proposed scheme over
conventional schemes, consistently minimizing the average AoI.

keywords— Age of Information (AoI), Stochastic Geome-
try, Preemptive and Non-preemptive Queue.

I. INTRODUCTION

The Internet of Things (IoT) is a rapidly growing technology
reshaping industries through enhanced efficiency, cost reduc-
tion, and enriched user experiences. Since many IoT appli-
cations operating in real-time with minimal delay tolerance,
ensuring timely data reception is paramount. Therefore, AoI
has been adopted as a performance metric to quantify data
freshness [1]. AoI tracks the time elapsed since the generation
of the most recent successfully delivered packet at the receiver.
AoI is usually studied via queueing theory to track the time
elapsed from packet generation to transmission under different
traffic generation patterns and packet scheduling schemes. In
large-scale and dense networks, stochastic geometry is jointly
utilized with queueing theory to account for the network
interference impact on AoI [2], [3]. This approach allows
us to capture the statistical insights necessary to understand
the behavior of large-scale networks and optimize long-term
system-level parameters in environments where device connec-
tivity and density fluctuate. The integration between stochastic
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geometry and queuing theory is well-known in the literature as
spatiotemporal analysis, which is thoroughly presented in [4].

Spatiotemporal analysis is utilized in [5] to study the AoI
for random and duty-cycled packet generation, however, under
non-preemptive packet scheduling only. Preemptive and non-
preemptive packet scheduling are compared in [6], however,
for small sized packets that do not need fragmentation. For
large-sized packets, rate adaptation via packet fragmentation
is studied in [7] to minimize delay, which does not necessarily
minimize AoI. The impact of packet segmentation on AoI is
studied in [8], however, for the conventional non-preemptive
and preemptive transmission schemes.

This paper introduces a novel k-preemptive transmission
scheme that minimizes AoI in large-scale IoT networks, where
the preemption decision depends on the number of already
delivered segments of the same packet. Assuming that different
IoT devices are distributed as a heterogeneous Poisson point
process (PPP) and utilizing an absorbing Markov chain (AMC)
to track segments transmissions, we develop a novel spa-
tiotemporal that characterizes and benchmarks the proposed k-
preemptive transmission scheme. Our numerical results show
that the hybrid k-preemptive transmission scheme consistently
outperforms both conventional schemes when the preemption
level k is designed carefully.

II. SYSTEM MODEL

This work focuses on a scenario involving an arbitrary
IoT transmitter-receiver pair sharing spectrum with other IoT
devices. The intended IoT pair is separated by a distance D0.
Interfering IoT devices are spatially distributed according to
a static PPP Ψ in R2 with intensity λ. To account for the
diversity among coexisting IoT devices, the interference at the
intended link is modeled via a heterogeneous Poisson field
(HPF). The HPF consists of V different network types that
differ in their transmission powers wv and activity factors
Av , where v ∈ {1, 2, . . . , V }. The type of each IoT device
is independent of its spatial location, and hence, Ψ can be
divided into V independent PPPs, denoted hereafter as Ψv

with intensities λv = fv(v)λ, where fv(v) is the probability
of belonging to type v. Transmissions are subject to power-
law path loss and Rayleigh fading, where h ∼ CN (0, 1) is the
normalized baseband channel gain and d−η is the power decay
model with the distance d and path-loss exponent η > 2. Note
that channel state information is unknown at the transmitter.

We assume a time-slotted system with independent block
channel fading across different time slots. The fixed realization
of the HPF is justified by the slow rate of change in network
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(a) Non-preemptive scheme
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(b) Preemptive scheme
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(c) k-preemptive scheme

Fig. 1: Evolution of AoI for the non-preemptive, preemptive, and k-preemptive schemes for a segmentation policy of N = 5 segments
per packet. Upwards and downwards blue arrows represent in-service packet generations and successful packet transmissions, respectively.
Green arrows and red arrows represent dropped packets and interrupted packets, respectively.

geometry compared to the short time slot duration. Con-
sequently, the intended IoT device experiences interference
from IoT devices at fixed but random locations, experiencing
varying activities and channel fading gains across different
time slots. To accommodate the random HPF realization, we
consider C performance classes based on the transmission
success probability (TSP). Using stochastic geometry analysis
in Section V, the likelihood of the intended IoT device
belonging to one of these classes is derived from the meta
distribution of the TSP.

The intended IoT transmitter operates with a one-packet size
queue, randomly generating data packets (e.g., sensor updates)
with probability a per time slot. Each packet has a size of L
bits, which can be further segmented into N smaller segments
for reliable transmission at a rate determined by the channel
condition. The transmission rate RN is calculated as

RN =
L

N × Ts
= ζW log2 (1 + θN ), (1)

where W denotes the channel bandwidth, Ts is the time
slot duration, ζ captures the gap to the theoretical Shannon’s
capacity, and θN is the minimum signal-to-interference-ratio
(SIR) threshold required to successfully decode a segment at
the intended receiver. All segments have to be successfully
received at the receiver to reconstruct and decode the packet.
An AMC is employed to track the transmission progress of
segments within the same packet, with absorption indicating
successful packet completion.

III. HYBRID k-PREEMPTIVE TRANSMISSION SCHEME

This section discusses two common preemption schemes
in the literature: non-preemptive and preemptive schemes.
Then, it introduces the concept of k-preemptive transmission
that blends elements of both non-preemptive and preemptive
schemes, allowing for a degree of flexibility in task scheduling.

1) Non-preemptive Transmission Scheme: In this scheme,
once a packet transmission begins, the sender is committed to
completing the transmission of all segments. If new packets

are generated while some segments are still in service, these
packets are discarded. Fig. 1(a) tracks the evolution of AoI
of the non-preemptive scheme starting from the arrival of an
arbitrary packet at time tk. The successful delivery of the kth

segment of the ith packet is highlighted by the dashed line
labeled tki . It can be seen that new packets that are generated
during the service of the current packet are dropped (e.g., i+1,
i + 3, and i + 4). After successful delivery of the in-service
packets (e.g., at tNi and tNi+2), the transmitter becomes idle
until the generation of a new packet (e.g., at ti+2).

2) Preemptive Transmission Scheme: In this scheme, a
newly generated packet interrupts the transmission of the
current in-service packet to ensure the transmission of the most
up-to-date information. Nevertheless, this does not always
guarantee minimum AoI due to wasting partial delivery of
in-service packets. It can be seen in Fig. 1(b) that the new
packets (e.g., i+ 1 and i+ 3) interrupt all pending segments
in the in-service packets (e.g., i and i + 2, respectively), and
transmission of 5 new segments is started.

3) k-preemptive Transmission Schemes: Neither the pre-
emptive nor the non-preemptive scheme guarantees achiev-
ing the minimum AoI. The preemptive scheme prioritizes
delivering the most updated information, but this comes at
the cost of discarding partially transmitted packets, resulting
in wastage. On the other hand, the non-preemptive scheme
avoids wasting partial packet transmissions but does so at the
expense of discarding fresh information. Here, we propose a
hybrid scheme that aims to strike a balance between these
approaches to minimize AoI. To achieve this balance and
ensure both information freshness and efficient transmission,
we introduce a preemption level parameter 0 ≤ k ≤ N , which
influences the preemptive behavior of the system. That is, the
transmitter initially operates in preemptive mode, then after
successfully delivering k segments of a packet, it switches
to non-preemptive mode. Hence, smaller values of k lead to
less frequent preemptions, while larger values indicate more
aggressive preemption. Note that when k = 0, the hybrid



Fig. 2: Unified DTMC for the packet transmission with N segments.

scheme is equivalent to the non-preemptive scheme and when
k = N , it is equivalent to the preemptive scheme.

For a pictorial illustration, we demonstrate a 3-preemptive
scheme in Fig. 1(c). The transmitter initially operates in
preemptive mode at ti. Upon receiving a new packet at ti+1,
the transmission of Packet i is interrupted since only two
segments (i.e., less than k segments) have been delivered at
that time. The transmitter then resumes preemptive mode after
successfully delivering Packet i+1 at time tNi+1. Subsequently,
the transmitter begins transmitting Packet i + 2 at time ti+2.
After successfully delivering k = 3 segments of Packet
i+2, it switches to non-preemptive mode at time t3i+2. Hence,
newly generated packets (e.g., at ti+3) are dropped and the
transmitter is committed to the completion of the remaining
segments of Packet i+ 2 initiated at ti+2.

In Fig. 1, the inter-arrival idle time is denoted as Tidle. The
time to absorption Tabs is derived from an AMC constructed
in Section IV to track the duration from the generation of
the first packet after a successful reception to the completion
of service. On the other hand, service time Tser refers to the
duration taken to successfully deliver all segments that belong
to the same packet. It is important to note that tasks are
not interrupted once initiated in the non-preemptive scheme,
hence Tabs = Tser. Conversely, in the preemptive scheme,
interruptions are possible, leading to potential differences
such that Tabs ≥ Tser, particularly if the current packet is
interrupted. In the k-preemptive scheme, the time to absorption
may or may not differ from the service time, depending on
which segment of the packet is interrupted.

IV. TEMPORAL AGE OF INFORMATION (AOI) ANALYSIS

The performance of the intended IoT link depends on the
employed segmentation policy along with the spatial real-
ization of the surrounding HPF of interferers. Let the tuple
(N, c) denote the adopted number of segments and the success
probability class for the intended link. We then construct
a discrete-time AMC (DT-AMC) for each (N, c) pair. The
categorization of the classes and the success probability pN,c

within each class are described in Section V.
The adopted DT-AMC tracks the successful delivery of

segments where packets can be generated at any instant inside
the time slot and the absorption state indicates that all seg-
ments are successfully delivered. For the sake of generalized
analysis, let α ∈ {0, 1} be the preemption factor defined
as α = 1{n≤k}, where 1{·} is the indicator function. In
the k-preemptive transmission scheme, the preemption level
k controls the transition from preemption to non-preemption
scheme at the (k + 1)th segment, thereby preventing the loss

of successful delivery of the previous k segments. The adopted
definition of α enables a unified construction of the DT-AMC
shown in Fig. 2 with a transition matrix TN,c =

[
QN,c HN,c

0 1

]
=


αa+ q1 q2 0 · · · 0 0

αa q1 q2 · · · 0 0
αa 0 q1 · · · 0 0
... 0

. . .
. . .

...
...

αap̄N,c 0 · · · 0 q1 pN,c

0 0 0 0 0 1

 ,

(2)
where (̄·) = 1 − (̄·) denotes the complement probability,
q1 = p̄N,c(1 − αa) accounts for failed segment delivery and
q2 = pN,c(1 − αa) accounts for successful segment delivery.
In (2), the N × N sub-stochastic matrix QN,c tracks the
transmissions of the N segments that belong to the in-service
packet and HN,c is an N × 1 vector that tracks the transition
of the absorbing state, which implies the successful delivery
of the last segment. In the preemptive scheme, the incoming
packet replaces older segments, causing the DT-AMC to restart
and wasting the transmission of older segments. This is shown
in (2) and Fig. 2 via the factor αa that restarts the DT-AMC to
its initial state of transmitting the first segment. In this context,
the instantaneous AoI ∆(t) is defined as the time elapsed since
the generation of the last successfully delivered packet. As
shown in Fig. 1, starting from an initial AoI ∆(0)

.
= ∆0, the

discretized AoI at the receiver increases with time in a staircase
fashion and drops upon the reception of a new packet.

For a given segmentation policy, the AoI calculation de-
pends on the average time to absorption Tabs, the average
service time Tser, and the inter-arrival idle time Tidle. A con-
sistent definition of Tabs for all schemes will be the time taken
from the end of an idle state due to a new packet generation
to the beginning of the next idle state due to successful packet
delivery at a rate RN . Following the DT-AMC analysis in [9,
Section 3.6], the average numbers of time slots to absorption
can be obtained as Mabs = β(I −QN,c)

−11, where β is the
initial state vector, I is the N × N identity matrix, and 1 is
an N × 1 vector of 1’s. Since we always start from the first
segment, upon packet arrival, the 1 × N initialization vector
is β = [1, 0, 0, · · · , 0]. Given the time slot duration Ts, the
average time to absorption is Tabs = TsMabs.

Let M i
ser denote the number of time slots required to deliver

all N segments of packet i. Then, T i
ser = TsM

i
ser = tNi −ti. In

the k-preemptive scheme, M i
ser is the sum of two independent

non-identical negative binomial random variables; M i
ser,p dur-

ing the preemptive period and M i
ser,n for the non-preemptive

period. It is straightforward to show that the distributions of
both random variables are expressed as:

P{M i
ser,p = mp} =

(
mp − 1

k − 1

)
pkN,c(1− pN,c)

mp−k(ā)mp−1,

P{M i
ser,n = mn} =

(
mn − 1

N − k − 1

)
pN−k
N,c (1− pN,c)

mn−N+k,

(3)
where mp ≥ k and mn ≥ N − k. Note that in the non-
preemptive scheme with k = 0, the service time is the same



as the time to absorption, as illustrated in Fig. 1. Using the
distribution in (3), the average service time of a packet Tser =
E(M i

ser,n)+E(M i
ser,p) is calculated as E(M i

ser,n) =
N−k
pN,c

and

E(M i
ser,p) =

∑∞
mp=k mpP{M i

ser,p = mp}∑∞
mp=k P{M i

ser,p = mp}
. (4)

Furthermore, the inter-arrival time T i
idle = TsM

i
idle mea-

sures the time between the successful delivery of Packet
i at the receiver and the generation of the next packet at
the transmitter. By virtue of the memoryless property of
Markovian models, the distribution of M i

idle is geometric with
probability mass function P(M i

idle = mi) = a(1 − a)mi−1,
from which we can calculate the average as Tidle =

Ts

a . Given
Tabs, Tser, and Tidle, the average AoI can be calculated as:

AoI = E(∆(t)) = Tser +
1

2
(Tabs + Tidle). (5)

V. SPATIAL SIR ANALYSIS

This section derives the transmission success probability
(TSP) pN,c, where the class c depends on the realization of
the HPF Ψ around the intended IoT link. For segmentation
policy N and an arbitrary realization of the HPF Ψ, the TSP
at the intended receiver can be expressed as

pN = P

(
wth0D

−η
0∑V

v=1

∑
u∈Ψv

1{Av}wvhuD
−η
u

> θN |Ψ

)
, (6)

where wt represents the transmission power, D0 and h0 are
the link length and channel gain of the intended IoT link,
Du and hu are the link length and channel gain from the u-
th interfering IoT device to the intended receiver, and 1{Av}
is the indicator function that accounts for the activities of the
devices. Averaging over fading gains and devices activities [7],
[10], the TSP for segmentation policy N is given by

pN =

V∏
v=1

∏
Du∈Ψv

 Av

1 + θN
wvD

η
0

wtD
η
u

+ (1−Av)

 . (7)

As there is no prior information regarding the exact con-
figuration of the interfering IoT network Ψ, we employ the
meta distribution to assess the probability of the target link
operating at a particular success probability [10]. Following
[7], [10], we adopt the beta distribution to approximate the
meta-distribution; F̄ (θN , γ) = P {pN > γ)}, as follows:

F̄ (θN , γ) = 1− Iγ
(
µN (µN − νN )

νN − µ2
N

,
(1− µN )(µN − νN )

νN − µ2
N

)
,

(8)
where Iγ(a, b) is the regularized incomplete beta function,
µN and νN are the first and second moments of pN across
different realizations of the HPF Ψ, and are given by [7]:

µN = exp

(
−Λθ

2
η

N

V∑
v=1

(
wv

wt

) 2
η

kvλv

)
, (9)

νN = exp

(
−Λθ

2
η

N

V∑
v=1

(
wv

wt

) 2
η

kvλv

(
2−

(
1− 2

η

)
kv

))
,

(10)
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Fig. 3: TSP meta-distribution for different values of RN with packet
size L = 40 Bytes and N ∈ {1, 2, 3, 4, 5} segments.

where Λ = 2(πD0)
2

η sin (2π/η) . F̄ (θN , γ) reflects the percentage of
HPF realizations where the target link is expected to operate
with TSP pN exceeding γ. To obtain meaningful per-class
TSP pN,c, we discretize (8) into C equiprobable classes. Let
ζ0 = 0 and ζC = 1, and choose {ζ1, ζ2, · · · , ζC−1} that satisfy
F̄ (θN , ζi) − F̄ (θN , ζi−1) = 1

C , for all i = 1, 2, · · · , C − 1.
Then, pN,c for each class is the median value within the
boundaries [ζc, ζc+1], which can be obtained through

F̄ (θN , ζc)− F̄ (θN , pN,c) =
1

2C
. (11)

VI. NUMERICAL RESULTS

Following [7], [11], we validate the analysis via Monte
Carlo simulations over an area of 4.5 km2 with 1,000 different
HPF realizations over 10,000 time iterations. Unless stated oth-
erwise, the parameters for HPF are set as follows: λ = 0.001
devices/m2, divided into V = 3 different networks with a
uniform distribution fv(v) = 1/3 where v ∈ {1, 2, 3}, and
transmit power and activity factors wv ∈ {10, 7, 5} mW and
kv ∈ {0.1, 0.3, 0.5}, respectively. An arrival rate of a = 0.1 is
considered along with the following link parameters: W = 100
kHz, ζ = 0.8, η = 4, D0 = 20 meters, and N = 5 rates. To
find pN,c, the meta-distribution in (8) is evaluated for C = 35
equiprobable TSP classes for different HPF realizations. Fig. 3
presents F̄ (θN , γ) for different transmission rates and confirms
that both the analysis and simulation results of each TSP meta-
distribution are identical.

In the following, we compare the AoI of the proposed hybrid
k-preemptive scheme with different preemption levels, ranging
from non-preemptive to preemptive, as discussed in Section II.
Several parameters affect the AoI, including packet arrival
rate, channel quality, packet size, and number of segments.
However, due to space limitation, we combine the effects of
channel quality and packet size into one parameter; the success
probability. In each figure, we maintain a constant arrival rate a
and a number of segments N , facilitating comparative analysis
of different schemes across varying success probabilities.

In Fig. 4(a), we examine the scenario with a = 0.1 and N =
3, showcasing the AoI of all possible preemption levels (i.e.,
k = 0, 1, 2, and 3) across different success probability classes.
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Note that 0-preemptive and 3-preemptive refer to the non-
preemptive and preemptive schemes, respectively. Notably, in-
creasing the success probability substantially reduces the AoI
across all schemes. Under conditions of poor channel quality
(i.e., low success probabilities), the 1-preemptive scheme
outperforms all other schemes, including the non-preemptive
scheme, as it prioritizes completing ongoing transmissions
over initiating new ones, particularly when success proba-
bilities are low. This behavior holds across various success
probabilities, although the advantage diminishes as success
probability increases. Conversely, the preemptive scheme (i.e.,
the 3-preemptive scheme) exhibits the highest AoI due to its
tendency to prematurely terminate ongoing transmissions in fa-
vor of new arrivals. These findings underscore the importance
of adaptively selecting transmission mode based on prevailing
channel conditions and arrival rates.

Fig. 4(b) replicates the experiment for N = 5 and confirms
the findings observed in Fig. 4(a). It indicates that there
exists a preemption level k beyond which switching to a non-
preemptive strategy increases the average AoI. Fig. 4 also un-
derscores the benefits of segmentation, wherein increasing the
number of segments from N = 3 to N = 5 leads to a reduction
in AoI. This reduction occurs because, for a given packet size
and time slot duration, a higher number of segments results in
smaller segment sizes that can be transmitted at a lower rate
with a relaxed SIR threshold, hence, improving the success
probability. The improved success probability results in fewer
retransmissions, leading to a shorter time to absorption and
service time (i.e., lower AoI). However, there exists an optimal
N beyond which the AoI increases, due to the increase in
the number of segments required to be successfully received,
which corroborates the findings of [7].

Overall, the results highlight the benefits of the proposed
hybrid k-preemptive scheme and the importance of rate adap-
tation to minimize AoI in wireless IoT networks. The work
in [6] identified preemptive schemes as optimal for non-
segmented packet transmission. However, our analysis con-
siders packet segmentation, which introduces complexities that
favor alternative transmission strategies. Therefore, the appar-
ent contradiction stems from differing underlying assumptions.

VII. CONCLUSION

In this work, we developed a spatiotemporal model to
analyze the AoI of a target IoT link within a large-scale IoT

network. Our model considers IoT devices distributed accord-
ing to a heterogeneous Poisson field of interferers, and we
investigated the average AoI using an absorbing Markov chain
framework. Additionally, we incorporated packet segmentation
and proposed a novel hybrid k-preemptive scheme. Our study
evaluated the average AoI of conventional non-preemptive
and preemptive schemes, as well as the k-preemptive scheme,
across various system parameters. Our numerical results high-
light the superiority of the k-preemptive scheme that preempts
packet transmission only if fewer than k segments are deliv-
ered. This scheme consistently outperforms both conventional
schemes when an appropriate preemption level is selected.
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