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Abstract—In this paper, we characterize the asymmetric total
degrees of freedom (DoF) of a multiple-input multiple-output
(MIMO) 3-way channel. Each node has a separate-antenna full-
duplex MIMO transceiver with a different number of antennas,
where each antenna can be configured for either signal trans-
mission or reception. Each node has two unicast messages to be
delivered to the two other nodes. We first derive upper bounds on
the total DoF of the system. Cut-set bounds in conjunction with
genie-aided bounds are derived to characterize the achievable
total DoF. Afterwards, we analytically derive the optimal number
of transmit and receive antennas at each node to maximize the
total DoF of the system, subject to the total number of antennas
at each node. Finally, the achievable schemes are constructed.
The proposed schemes are mainly based on zero-forcing and
null-space transmit beamforming.

I. INTRODUCTION

Full-duplex systems have attracted a great deal of attention
recently due to their potential benefits to significantly enhance
the throughput and spectral efficiency of conventional half-
duplex systems. Recent results from academia [1, and refer-
ences therein] and industry [2] have proposed various practical
designs to implement in-band full-duplex radios by cancelling
or suppressing the self-interference signal, generated during
simultaneous transmission and reception, at the RF and base-
band level. There are two possible methods of antenna in-
terfacing for full-duplex MIMO transceivers; separate-antenna
architecture, and shared-antenna architecture [1, Section IV].
In the separate-antenna architecture, each antenna is dedicated
to either signal transmission or reception. In the shared-
antenna architecture, each antenna simultaneously transmits
and receives signals on the same channel with the aid of a
circulator that routes the transmitted signal from the TX signal
chain to the antenna and the received signal on the antenna to
the RX signal chain.
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The two-way communication channel was introduced in the
seminal paper by Shannon [3]. The extension of the 2-way
channel to the case of three nodes, i.e., the 3-way channel, has
recently attracted much attention [4], [5]. It is assumed that
all nodes operate in a perfect full-duplex mode. Furthermore,
there are six unicast messages to be exchanged among the
nodes; each node is intended to exchange unicast messages
with the other nodes simultaneously. The sum-capacity of the
3-way channel, that characterizes the DoF of the channel, is
studied in [4] with respect to the Gaussian channel model.
The authors in [5] investigate the symmetric DoF of a MIMO
3-way channel with a homogeneous number of antennas; each
node has MT transmit antennas and MR receive antennas.

The main contribution of this paper is the characterization
of the asymmetric total DoF of a MIMO 3-way channel. Each
node has a separate-antenna full-duplex MIMO transceiver
where each antenna can be configured to either transmit or
receive, and the nodes have a different number of antennas.
Each node has two unicast messages to be delivered to the two
other nodes. It should be noted that the proposed system model
is a generalized version of the symmetric model studied by
Maier et al. in [5] where the total number of antennas of each
node are the same, and each node has MT transmit antennas
and MR receive antennas.

We first derive upper bounds on the total DoF of the
system in terms of MT`

and MR`
, where ` ∈ {1, 2, 3}.

Cut-set bounds in conjunction with genie aided bounds are
utilized to characterize the achievable total DoF. Afterwards,
we analytically derive the optimal number of transmit and
receive antennas at each node to maximize the total DoF of the
system, subject to the total number of antennas at each node.
Finally, the achievable schemes are constructed. The schemes
are mainly based on zero-forcing and null-space beamforming.

Lower and upper boldface letters denote column vectors and
matrices, respectively. XH and X† denote the Hermitian trans-
pose and the pseudo-inverse of X, respectively. The sequence
(x(1),x(2), . . . ,x(N)) is denoted by xN . Let h (x) denote the
differential entropy of a random vector x, and I (x;y) denote
the mutual information between two random vectors x and y.



Fig. 1: The system model.

II. SYSTEM MODEL

We consider the MIMO 3-node fully-connected interfer-
ence network, a.k.a. the MIMO 3-way channel, depicted in
Fig. 1. Each node has a separate-antenna full-duplex MIMO
transceiver where each antenna can be configured for either
signal transmission or reception. Consequently, node `, where
` ∈ U = {1, 2, 3}, has M` antennas of which it utilizes
MT`

antennas for signal transmission and MR`
antennas for

signal reception, where MT`
+MR`

= M`. Furthermore, our
asymmetric setting entails a different number of antennas at
the different nodes. Henceforth, without loss of generality, we
assume that M1 ≥ M2 ≥ M3. Moreover, the signals as well
as the channel coefficients are assumed to be complex-valued.
Similar to [4], [5], we assume that the nodes operate in a
perfect full-duplex mode, i.e., each node can transmit and
receive messages simultaneously and the effect of residual
self-interference, imposed by the transmit antennas on the
receive antennas within the same transceiver, is perfectly
cancelled or suppressed.

Node i can send two independent unicast messages;
Wij and Wik to nodes j and k with rates Rij and Rik, re-
spectively, for i, j, k ∈ U and i 6= j 6= k. The transmitted
signal from node i is denoted by xi ∈ CMTi

×1. It is assumed
that the power of the transmitted signal from node i is
bounded by ρ, i.e., E

{
‖xi‖2

}
≤ ρ. Taking into account the

aforementioned description of the system model, the received
signal at node j at time slot n, denoted by yj(n) ∈ CMRj

×1,
is given by

yj(n) =
∑

i∈U,i6=j

Hij xi(n) + zj(n) , (1)

where Hij ∈ CMRj
×MTi is the random channel matrix from

node i to node j, and zj ∈ CMRj
×1 is the additive noise signal

at node j whose elements are independent and identically
distributed (i.i.d.) complex Gaussian random variables with
zero mean and unit variance. Throughout this paper, we
assume that each node has perfect knowledge of the channel
state information (CSI) from the two other nodes. Moreover,
for the sake of notational simplicity, we drop the time index n
throughout the sequel unless necessary.

Let yn
` denote the sequence of y` from time slot 1 up to

time slot n, for ` ∈ U and n ∈ N={1, 2, . . . , N}. Now, we
define the encoder and decoder functions for the considered
system model [6]. The encoder function at node i maps its own
messages Wij and Wik, and the past values of the received

symbols yn−1
i into the symbol xi(n). Therefore, the encoder

function Ei of node i is expressed as

xi(n) = Ei
(
Wij ,Wik,y

n−1
i

)
, (2)

where i, j, k ∈ U and i 6= j 6= k. On the other hand, for
a transmission block of length N , the decoder function at
node i maps its own messages Wij and Wik, and the received
symbols in each block yN

i to form estimates of its desired
messages Ŵji and Ŵki. Therefore, the decoder function Di

of node i is expressed as(
Ŵji, Ŵki

)
= Di

(
Wij ,Wik,y

N
i

)
. (3)

In this work, we use the total DoF as the key performance
metric to characterize the capacity behavior in the high signal-
to-noise ratio (SNR) regime [7]. The DoF of a message Wij

with a rate Rij (as a function of the SNR) is designated as dij ,
for i, j ∈ U and i 6=j. It is characterized as

dij = lim
SNR→∞

Rij(SNR)
log (SNR)

. (4)

The total DoF of the MIMO 3-way channel, d∑, is defined as

d∑ = d12 + d13 + d21 + d23 + d31 + d32. (5)

III. MAIN RESULT

In this section, we characterize the asymmetric total DoF of
the full-duplex MIMO 3-way channel. The following theorem
presents the main result of this section.

Theorem 1. The optimal total DoF of the MIMO 3-way
channel, with M1 ≥ M2 ≥ M3, where each node sends
a unicast message to each of the two other nodes, is given by

d∑ = min

{
M1+

M2+M3−M1

3
, M2+M3

}
. (6)

Proof: The converse proof of Theorem 1 is presented
in Section III-A, together with the optimal antenna allocation
at each node that can achieve the maximum total DoF of
the system. Finally, the achievability proof of Theorem 1 is
presented in Section III-B.

A. Converse Proof of Theorem 1
The proof is divided into three parts. First, the cut-set

bounds are provided. Next, the genie-aided bounds are derived.
Finally, the optimal antenna allocation at each node is derived
in order to maximize the total DoF given by the cut-set and
genie-aided bounds.

1) Cut-set Bounds: The derivation of cut-set bounds hinges
on the cut-set theorem [6]. Let S and Sc denote the set of
source and destination nodes, respectively, where Sc is the
complement of S. We start the proof by arguing that the
cooperation of any two nodes among the three nodes does
not degrade the DoF [6]. Taking this fact into consideration,
we first consider the cut around S = {1} and Sc = {2, 3}.
This leads to the following inequality

d12+d13 ≤ min {MT1
, MR2

+MR3
} . (7)



Similarly, the following upper bounds can be obtained

d21+d23 ≤ min {MT2
, MR1

+MR3
} , (8)

d31+d32 ≤ min {MT3
, MR1

+MR2
} . (9)

Adding (7), (8) and (9), we get

d∑ ≤ min {MT1
+MT2

+MT3
,MT1

+MT2
+MR1

+MR2
,

MT1
+MT3

+MR1
+MR3

,MT2
+MT3

+MR2
+MR3

,

MT1
+2MR1

+MR2
+MR3

,MT2
+MR1

+2MR2
+MR3

,

MT3
+MR1

+MR2
+2MR3

, 2 (MR1
+MR2

+MR3
)} . (10)

On the other hand, if we consider the cut around S = {1, 2}
and Sc = {3}, we obtain

d13+d23 ≤ min {MT1
+MT2

, MR3
} . (11)

Similarly, the following upper bounds can be obtained

d21+d31 ≤ min {MT2
+MT3

, MR1
} , (12)

d12+d32 ≤ min {MT1
+MT3

, MR2
} . (13)

Adding (11), (12) and (13), we get

d∑ ≤ min {MR1
+MR2

+MR3
,MT1

+MT2
+MR1

+MR2
,

MT1
+MT3

+MR1
+MR3

,MT2
+MT3

+MR2
+MR3

,

MR1
+2MT1

+MT2
+MT3

,MR2
+MT1

+2MT2
+MT3

,

MR3
+MT1

+MT2
+2MT3

, 2(MT1
+MT2

+MT3
)}. (14)

Combining (10) and (14), and then simplifying the resulting
expression, the cut-set upper bound on the total DoF of the
MIMO 3-way channel is characterized as

d∑ ≤ min {MT2
+MT3

+MR2
+MR3

, MT1
+MT2

+MT3
,

MR1
+MR2

+MR3
} . (15)

In cut-set bounds, it is assumed that the nodes on the same
side of the cut are fully cooperating. For instance, if we
consider the cut around S = {1} and Sc = {2, 3}, we can
imagine a genie that transfers W23 to node 3 and W32 to
node 2. That is why, the cut-set bounds are referred to as the
two-sided genie-aided bounds [8]. In order to establish tighter
bounds on the total DoF, we resort to the one-sided genie-
aided bounds [5], [8], [9] which we refer to as the genie-aided
bounds in the sequel.

2) Genie-aided Bounds: The key idea of genie-aided
bounds is that we assume the genie transfers the side-
information from one node to another and not the other way
around [8]. For example, in cut-set bounds, the genie transfers
W23 and W32 to nodes 3 and 2, respectively. However, in
genie-aided bounds, we assume that the genie transfers either
W23 or W32 and, hence, the other message is not known at
its respective node a priori.

We assume that every node can decode its desired unicast
messages from the other nodes, according to the decoding
function in (3), with an arbitrarily small probability of error.
For example, node 1 decodes W21 and W31 using its received
signal, yN

1 , and its unicast messages, W12 and W13, intended
to node 2 and node 3, respectively. Thus, node 1 knows yN

1 ,

W12, W13, W21 and W31 after the decoding process. Node 1
cannot decode more messages without being provided with
additional side-information. In order to decode more messages,
node 1 should be more knowledgeable than some other nodes.
Suppose we want node 1 to be able to decode W32. Knowing
W21, we should provide node 1 with W23 and yN

2 in order to
decode W32. Assume that the genie transfers W23 to node 1 as
side-information. Then, what is left is to specifically know the
additional side-information that is required to be transferred
by the genie in order to generate yN

2 . We will elaborate this
as follows. Having W21 and W23, node 1 can generate x2(1).
We then evaluate the following expression

y1(1)−H21x2(1) = H21x2(1)+H31x3(1)+z1(1)−H21x2(1)

= H31x3(1)+z1(1) . (16)

Next, we multiply the previous expression by H†31 to get

H†31 (y1(1)−H21x2(1)) = x3(1) +H†31z1(1) . (17)

It is worth mentioning that the left pseudo-inverse of H31

is guaranteed to exist almost surely if and only if MR1
≥

MT3
. Let us assume that this condition holds true for now and

then we will later study the case when this condition is not
satisfied. Taking into consideration Eq. (1), node 1 generates
y2(1) as follows.

H32

(
x3(1) +H†31z1(1)

)
+H12x1(1)

= (H12x1(1)+H32x3(1)+z2(1)) +
(
H32H

†
31z1(1)−z2(1)

)
= y2(1) + g1,W23

(1) , (18)

where g1,W23
(1) = H32H

†
31z1(1) − z2(1). We can see

from (18) that the side-information that node 1 requires
is g1,W23

(1) and, hence, node 1 can subtract it from
H23

(
x3(1)+H†31z1(1)

)
+H21x1(1) to generate y2(1). Hav-

ing y2(1), W21 and W23, node 1 can generate x2(2), according
to the encoding function in (2). Following the same line of
thought explained above, node 1 can accordingly generate
y2(2). Node 1 reiterates this procedure until it completely
generates yN

2 .
To sum up, when the genie transfers W23 as well as gN

1,W23

to node 1 as side-information, it becomes more knowledgeable
than node 2, that only has W21, W23 and yN

2 . Hence, node 1
can decode W32 in addition to W21 and W31. From Fano’s
inequality, we can write

N (R21 +R31 +R32)

≤ I

W21,W31,W32︸ ︷︷ ︸
W1

; yN
1 ,W12,W13,W23︸ ︷︷ ︸

W2

,gN
1,W23

+NεN

= I
(
W1; y

N
1 ,W2,g

N
1,W23

)
+NεN

(a)
= I

(
W1; W2,g

N
1,W23

)
+ I
(
W1; y

N
1 |W2,g

N
1,W23

)
+NεN

(b)
= I

(
W1; y

N
1 |W2,g

N
1,W23

)
+NεN

= h
(
yN
1 |W2,g

N
1,W23

)
− h

(
yN
1 |W1,W2,g

N
1,W23

)
+NεN



(c)

≤ h
(
yN
1

)
− h

(
yN
1 |W1,W2,g

N
1,W23

)
+NεN

(d)
= h

(
yN
1

)
−

N∑
n=1

h
(
y1(n) | yn−1

1 ,W1,W2,g
N
1,W23

)
+NεN

≤ h
(
yN
1

)
−

N∑
n=1

h
(
y1(n) | yn−1

1 ,W1,W2,g
N
1,W23

, . . .

yn−1
2 ,yn−1

3

)
+ NεN

(e)
= h

(
yN
1

)
−

N∑
n=1

h
(
y1(n) | yn−1

1 ,W1,W2,g
N
1,W23

, . . .

yn−1
2 ,yn−1

3 ,xn
2 ,x

n
3 , z

n−1
1

)
+ NεN

(f)
= h

(
yN
1

)
−

N∑
n=1

h
(
z1(n) | yn−1

1 ,W1,W2,g
N
1,W23

, . . .

yn−1
2 ,yn−1

3 ,xn
2 ,x

n
3 , z

n−1
1

)
+ NεN

(g)
= h

(
yN
1

)
−

N∑
n=1

h
(
z1(n) | gN

1,W23
, zn−11

)
+NεN

= h
(
yN
1

)
− h
(
zn1 | gN

1,W23

)
+NεN

≤
N∑

n=1

h
(
[H21H31]

[
x2 (n)
x3 (n)

]
+ z1(n)

)
+O(1) +NεN , (19)

where O(1) is a term that is irrelevant to the DoF characteri-
zation, (a) follows from the chain rule for mutual information,
(b) follows from the fact that W1, W2 and gN

1,W23
are inde-

pendent from each other and, hence, I
(
W1; W2,g

N
1,W23

)
= 0,

(c) follows from the fact that conditioning reduces entropy,
(d) follows from the chain rule for entropy, (e) follows
from the fact that xi(n) is a function of Wij , Wik and
yn−1
i for i, j, k ∈ U and i 6= j 6= k, and z1(n) =

y1(n)− (H21 x2(n) +H31 x3(n)), (f) follows from the fact
that h (H21 x2(n) +H31 x3(n) + z1(n) | x2(n) ,x3(3)) =
h (z1(n) | x2(n) ,x3(3)), (g) follows from the fact that z1(n)
and

{
yn−1
i ,W1,W2,x

n
j

}
are independent, for i ∈ U and j ∈

U\{1}. It should be noted that εN → 0 as N → ∞. Thus,
when MR1

≥MT3
, the total DoF of W21, W31 and W32 is

upper bounded by

N (d21+d31+d32) ≤ N (rank ([H21H31 ])+εN )

= N (min{MR1
,MT2

+MT3
}+εN ).(20)

When dividing both sides by N and then letting N → ∞,
we obtain

d21+d31+d32 ≤ min{MR1
,MT2

+MT3
}, if MR1

≥MT3
.(21)

On the other hand, when MT3
≥MR1

, the left pseudo-inverse
of H31 does not exist. To tackle this problem, we deduce an
upper bound on the total DoF by increasing the number of
receive antennas at node 1 such that MR1 =MT3 . As a result,
the total DoF of W21, W31 and W32 is upper bounded by

d21+d31+d32 ≤ min{MT3
,MT2

+MT3
}, if MT3

≥MR1
.(22)

Combining (21) and (22), we finally get

d21+d31+d32 ≤ min {max {MR1 ,MT3},MT2+MT3} . (23)

We have based our previous discussion on the assumption
that the genie provides node 1 with W23 and gN

1,W23
to be able

to decode W32. Now we assume that the genie transfers W32

and gN
1,W32

to node 1 in order to decode W23. Following the
same approach, we can find that

gN
1,W32

= H23H
†
21z

N
1 − zN3 . (24)

Therefore, the total DoF of W21, W31 and W23 is upper
bounded by

d21+d31+d23 ≤ min {max {MR1
,MT2

},MT2
+MT3

} . (25)

Following the same procedure for deriving the genie-aided
bounds from node 1 perspective, we can derive those from
node 2 and node 3 perspectives. Combining (23), (25) and the
bounds from node 2 and node 3 perspectives, with the cut-
set bounds given by (15), the total DoF of the MIMO 3-way
channel is upper bounded by

d∑ ≤ min {MT1+MT2+MT3 , MR1+MR2+MR3 ,

max{MR2 ,MT3}+max{MR3 ,MT2} ,
max{MR2 ,MT1}+max{MR1 ,MT2} ,
max{MR3 ,MT1}+max{MR1 ,MT3}} . (26)

The derivation details of (26) are given in [10, Section III-A].

Corollary 1. The special case of MT1
=MT2

=MT3
=MT

and MR1
=MR2

=MR3
=MR , studied by Maier et al. in [5],

is covered by (26). In this case, the total DoF of the symmetric
MIMO 3-way channel is upper bounded by

d∑ ≤
{

min {3MR, 2MT } for MT ≥MR,

min {3MT , 2MR} for MT ≤MR.
(27)

3) Optimal Antenna Allocation: In this part, we seek the
optimal allocation of transmit and receive antennas at each
node in terms of M1, M2 and M3 to maximize the upper
bound on the total DoF of the MIMO 3-way channel, given
by (26). The optimization problem is formulated as follows

P1: max
d∑,MT`

,MR`

d∑
s.t. (26),

MT`
+MR`

=M`, for ` ∈ {1, 2, 3}.(28)

Lemma 1. The total DoF of the MIMO 3-way channel is
upper bounded by d∑ ≤ d?∑, where d?∑ is the optimal solution
of P1, which is given by

d?∑ =

M1+
M2+M3−M1

3
for M1≤M2+M3

M2+M3 for M1≥M2+M3.
(29)

When M1 ≤ M2+M3, one optimal antenna allocation that
achieves the corresponding maximum total DoF is[

M?
R1
,M?

R2
,M?

R3

]
=

[
0,
M1+2M2−M3

3
,
M1+2M3−M2

3

]
.(30)

On the other hand, when M1≥M2+M3, one optimal antenna
allocation that yields the maximum total DoF in this case is[

M?
R1
,M?

R2
,M?

R3

]
=[M2+M3, 0, 0]. (31)



Note that M?
T`

=M`−M?
R`

according to the second constraint
of P1.

Proof: The details of the solution of P1 are reported
in [10, Appendix A]. This completes the converse proof of
Theorem 1.

B. Achievability Proof of Theorem 1
In this subsection, we provide the achievable schemes of to-

tal DoF of the MIMO 3-way channel described in Theorem 1.
Let i, j, k ∈ U and i 6= j 6= k. A message Wij is encoded
at the transmitter into the symbol uij ∈ Crij×1, where
rij ≤MTi . The transmitted signal from node i, xi ∈ CMTi

×1,
is defined as

xi = Tijuij +Tikuik, (32)

where Tij ∈ CMTi
×rij is the precoding matrix for the signal

transmitted from node i to node j.
1) M1 ≤ M2 + M3: In this case, the total DoF of the

MIMO 3-way channel is bounded by d∑ ≤M1+
M2+M3−M1

3 .
The transmit and receive antennas at each node are allocated
as per (30). It should be noted that if MT`

and MR`
, for

` ∈ U , are not integers, we use the symbol extension method
over multiple time slots [7]. Then, we proceed with the design
of the transmit strategy as explained below. The transmitted
signals from each node are

x1=T12u12+T13u13, x2=T23u23, x3=T32u32, (33)

where the dimensions of encoded data symbols u12, u13, u23

and u32 are (MT1
−MR3

)×1, (MT1
−MR2

)×1, MT2
×1 and

MT3×1, respectively, whereas the dimensions of precoding
matrices T12, T13, T23 and T32 are MT1 × (MT1−MR3),
MT1

× (MT1
−MR2

), MT2
×MT2

and MT3
×MT3

, respectively.
Note that T21 = T31 = 0 since MR1

= 0. The precoding
matrices T12 and T13 are designed such that

T12 ∈ null (H13) , T13 ∈ null (H12) . (34)

It is worth mentioning that the right pseudo-inverses of
H13 and H12 exist almost surely owing to the fact that
MR3≤MT1 and MR2≤MT1 , respectively. On the other hand,
the precoding matrices T23 and T32 are randomly selected.
Consequently, the received signals at nodes 2 and 3 are

y2 = H12T12u12 +H32T32u32 + z2,

y3 = H13T13u13 +H23T23u23 + z3. (35)

Node 2 can decode u12 and u32 by projecting y2 to the
null spaces of (H32T32)

H and (H12T12)
H , respectively. Let

Q12 ∈ CMR2
×(MR2

−MT3) and Q32 ∈ CMR2
×(MR2

+MR3
−MT1)

denote the projection matrices designed by node 2 such that

Q12∈null
(
(H32T32)

H
)
, Q32∈null

(
(H12T12)

H
)
.(36)

Since we assume that the nodes have prefect CSI knowledge,
the zero-forcing estimates of u12 and u32 at node 2 are

û12 = G12

(
QH

12H12T12u12 +QH
12z2

)
,

û32 = G32

(
QH

32H32T32u32 +QH
32z3

)
, (37)

where G12 ∈ C(MT1
−MR3)×(MT1

−MR3) and G32 ∈
CMT3

×MT3 are the inverses of QH
12H12T12 and QH

32H32T32,
respectively. G12 and G32 are full rank almost surely because
Q12 and Q32 are designed independently of H12 and H32,
respectively, and H12 and H32 are drawn from a continuous
random distribution. Similarly, node 3 can decode u13 and
u23. As a result, node 2 decodes MT1 +MT3 −MR3 lin-
early independent information symbols while node 3 decodes
MT1

+MT2
−MR2

linearly independent information symbols.
Thus, the scheme achieves a total of 2MT1

+MT2
+MT3

−MR2
−

MR3
=M1+

M2+M3−M1

3 DoF for M1≤M2+M3.
2) M1 ≥ M2 + M3: In this case, the total DoF of the

MIMO 3-way channel is bounded by d∑ ≤M2+M3. The
transmit and receive antennas at each node are allocated as
per (31). The transmitted signals from nodes 2 and 3 are

x2=T21u21, x3=T31u31, (38)

where u21 ∈ CMT2
×1 and u31 ∈ CMT3

×1, whereas T21 ∈
CMT2

×MT2 and T31 ∈ CMT3
×MT3 . The precoding matrices

T21 and T31 are randomly selected. The received signal at
node 1 is

y1 = H21T21u21 +H31T31u31 + z1. (39)

Analogous to the previous case, node 1 applies zero-forcing
to decode u21 and u31 separately. In other words, node 1 can
decode u21 and u31 by designing V21 and V31 such that
V21 ∈ null

(
(H31T31)

H
)

and V31 ∈ null
(
(H21T21)

H
)

,
respectively. Afterwards, the zero-forcing estimates of u21 and
u31 are obtained via evaluating the expressions VH

21y1 and
VH

31y1, respectively. As a result, node 1 decodes a total of
MT2

+MT3
independent information symbols are decoded and,

hence, the scheme achieves M2+M3 DoF for M1≥M2+M3.
This completes the achievability proof of Theorem 1.
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