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Abstract—The reliable transmission of information is an in-
herently difficult and unpredictable task for LEACH-based net-
works. This is due to their adoption of centralized data exchange
points which are expected to deliver data transmission reliability
without being compromised by increasingly high rates of energy
consumption. Given that this is a goal made more difficult by
the constraints intrinsic to WSNs, the hardware deployed, task
to be performed and targeted environment, LEACH becomes
an increasingly restrictive factor when designing for dependable
data delivery. The limited number of fault tolerance measures
available to LEACH creates the need for strong and tailored
energy efficient fault tolerance methods. This paper therefore
proposes a series of simple and low cost functions by which fault
detection, tolerance and management may be achieved within a
highly constrained implementation of LEACH. The protocol is
then tested using a hardware deployment of 49 low cost nodes
in order to verify the delivered benefits and costs.

Index Terms—CH backup, duplicate nodes, fault tolerance,
hardware, heartbeats, LEACH, link failure, WSNs.

I. INTRODUCTION

Hierarchical routing has been a favourite for deployments
given its long and proven history as a dependable class of
classical routing protocols for WSNs. Out of these many
protocols, LEACH, being the first energy-efficient hierarchical
protocol, has received much focus by the research community.
Although this attention has allowed for the materialization
of dozens of LEACH-based routing techniques, the LEACH
protocol in itself suffers from many limitations in the areas of
fault detection, tolerance and management [1].

LEACH dictates that if a network starts out with nodes of
equal energy levels, then nodes may self-elect themselves as
cluster heads (CHs) based on the total number of nodes and the
expected number of CHs. Otherwise, nodes require informa-
tion on their own energy levels and the network’s total energy
as well. Once a node self-assigns itself the role of CH, the node
advertises this new assignment by broadcasting it. Non-CH
nodes receiving these broadcasts select the advertisement with
the strongest RSSI and transmit a join request to its source.
The CH creates a TDMA schedule from these join requests
and broadcasts it such that nodes may know exactly when they
may transmit. Once a round of transmissions is complete, the
clusters dissolve and the process repeats.

The first problem with this procedure is that LEACH does
not imply what a cluster ought to do once its CH fails. Left
to its own devices, the cluster would remain isolated till
the end of the round, at which point the nodes are able to
once again reorganize themselves into functional clusters [2].
This implies that LEACH-based deployments are obligated to
accept the inherent possibility that portions of its networks are
to occasionally suffer from temporary periods of isolation.

The second identifiable problem is that non-CH nodes
base their decision as to which CH to join solely off of
advertisement messages’ RSSI levels. This kind of behaviour
does not take into account that the CH with the strongest
RSSI may also suffer from time-dependent variations in its link
quality. This means that LEACH may in fact assign the critical
role of CH to nodes that are unable to provide consistently
high packet delivery success rates.

With these problems in mind, recent literature has suggested
a variety of fault tolerance methods which may be categorized
as either centralized or distributed approaches. Centralized
approaches include methods such as Sympathy, eScan, BOSS,
and MOTE-VIEW [3], [4], [5], [6]. They provide accurate
fault identification, but at the cost of using large volumes of
messages. The algorithms employed by these techniques are
also completely dependent on the sink node. If the sink node
fails, or the network is partitioned, then the fault management
process fails for either the entire network, or a part of the
network, respectively. This has caused centralized approaches
to be identified as risky and high-cost techniques [7].

Alternatively, distributed approaches try to overcome the
limitations of the centralized methods by assigning the re-
sponsibility of the fault-related decision-making process to
the entire network [8]. This is done by requiring nodes to
perform self-detection in addition to neighbor monitoring and
coordination [8]. Methods such as AppSleep [9], DSN [10],
and the energy level management algorithms of [11] and [12],
are based off of complex functions which require extensive
memory usage, driving up the nodes’ power consumption rates
[7].

Less processing-intensive distributed approaches, as sug-
gested by recent literature, have focused mainly on the use of
three strategies; heartbeat messages, CH backups, and energy-
level self-monitoring [13], [14], [15], [16], [17].
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The first of these methods requires that each CH transmits
periodic heartbeat messages to an assigned backup [13]. If
the backup does not receive a heartbeat from its CH, the
backup assumes that the CH has failed and attempts to replace
it [13]. The first problem with this strategy is that it does
not outline how a backup is selected for a CH, nor does it
define how the cluster is meant to behave if the backup fails
before the CH. Another flaw in this approach is concerned with
the significant overhead associated with the use of continuous
heartbeat messages. Also, another limitation of this algorithm
is that if the keep alives fail for any reason other than the actual
failure of the CH, then the backup CH will unnecessarily rise
up to fill the already occupied network role of CH. Having
two nodes occupy the same CH means that every message
destined to be relayed by a CH would then be relayed twice
wasting energy in the already resource constrained WSN.

The second strategy requires that each CH monitors its own
energy level. Once the CH’s energy level drops below a certain
threshold, the node is meant to report its imminent failure to
the backup so that the backup would immediately replace the
failing CH without any incurred interruptions to the cluster’s
operations [13]. However, this method assumes that the CH
will have enough resources, by way of channel availability and
remaining energy, in order to be able to report that it is failing.
Having said that, the findings of [18] show that the voltage of
a discharging battery remains fairly constant throughout the
majority of its lifetime before dropping sharply towards the
end of its lifespan. The results of [18] therefore support the
notion that nodes will most probably not have enough time or
resources to inform its backup that it is failing before ceasing
to function.

In order to overcome the limitations associated with the
aforementioned fault detection and fault tolerance methods,
this paper modifies the concepts of heartbeat messages and
CH backups in order to detect CH failures and subpar node-
to-CH connections. These methods are tested using 49 low
cost nodes pre-loaded with a strictly constrained LEACH-
implementation. This is in order to evaluate the fault tolerance
methods’ contributions to the network’s lifetime, robustness,
data delivery success rates and operating overhead.

Consequently, Section II of this paper details the developed
fault tolerance methods in conjunction with a description of
the hardware and routing layer used to verify the performance
of these methods. Section III details the tests performed and
provides an evaluation of the algorithms’ capabilities based on
the results attained. Finally, Section IV concludes the paper by
summarizing the lessons learnt and the recommended condi-
tions under which the proposed methods may be deployed.

II. SYSTEM DESIGN

This section is mainly concerned with describing the full
system used to prototype and test the proposed algorithms. The
first subsection covers the constrained LEACH implementation
used for prototyping and testing. The second subsection gives
an overview of the various fault tolerance functions introduced

to the LEACH protocol. The third subsection describes the
hardware used to form the WSN nodes and the testing bed.

A. Constrained LEACH-Based Routing Layer

In order to test the performance of the proposed algorithms
within harsh routing conditions, the designed routing layer has
been constrained in several ways. Although these constraints
cause the routing layer to deviate from the algorithms of
LEACH defined in [19], the routing layer is designed in order
to achieve maximum fidelity to true life applications, without
compromising the results’ relevancy to other implementations
which may adhere more strictly to the methods outlined in
[19].

The first deviation is concerned with LEACH’s outlined
method of total topological dissolution and reformation at the
end of each round. An increasing number of applications have
abandoned this approach as they have required the formation
of dedicated clusters. This is since, in multi-functional WSNs,
such as the one developed for [20], certain tasks are deemed
more important than others. In situations such as these, net-
works are designed with permanent partitioning of nodes into
clusters. This is to avoid having nodes assigned to critical tasks
depleting their energy by routing messages on behalf of other
nodes that were assigned to lesser tasks.

Another deviation is to do with the desirability of multi-
hopping features in WSNs. The protocol in [19] defines
a method by which nodes communicate with a CH, and
then the CH with a sink node, and vice versa. However,
in order to allow WSNs to monitor phenomena over very
large distances multi-hopping is required. The environmental
monitoring deployments of PODs [21], SensorScope [22], and
Great Duck Island [23], has found this to be the case, where
their large scale deployments were only possible due to the
implementation of robust multi-hop networks. Mirroring this
requirement, the implemented LEACH exhibits multi-hopping
behaviour, while maintaining a hierarchical topology, through
the use of nested clusters. To explain, observing Fig.2, node
1, resting in the top layer, is the CH of nodes 2-4, while node
4, acts as the CH of nodes 5-7, making nodes 4-7 a second
order, nested cluster.

A third alteration to the LEACH protocols is to do with
the CH self-selection process. Since distributing energy level
information throughout the network for accurate CH self-
selection is a very expensive procedure, synonymous with
broadcasting, an alternate approach is suggested. By including
energy level information in the packet header, the CH of each
cluster is aware of the energy levels of its cluster’s members.
The CH may therefore accurately carry out the CH selection
process by inspecting the headers of its members’ data packets,
thereby incurring significant savings to the energy consump-
tion and channel occupancy rates of the network.

Finally, the last difference between the implemented and
the original protocols is to do with the market-available
transceivers. Cheaper transceivers, such as the Nordic Semi-
conductor’s nRF24L01+, do not always have the option of
providing accurate RSSI data, operating in a true-mesh design,



having an unlimited number of nodes per cluster, or offering
varying transmission power levels [24]. The nRF24L01+, for
example, suffers from all of these limitations, but, as a trade
off, the node sells at one of the lowest prices possible. When
combined with the findings of [22], which has shown that the
drop in accuracy due to the use of low cost nodes may be
counter-acted through the use of many of these nodes, imple-
mentations such as [25] have favoured the use of transceivers
such as the nRF24L01+ due to their attractive low power and
low cost properties.

The routing layer designed therefore, attempts to adapt to
all of these limitations, without compromising the applicability
of the attained test results. This is done by using a low cost,
low power, and highly constrained node, as will be discussed
in Section II-C, as well as nested clusters, three packet types,
and two operational procedures [20].

The three packet classes used are the ’Data’, ’Network
Topology’, and ’CH Assignment’ packet types. The data
packet may contain any form of communicable information.
The network topology packet is a topological map of all the
active nodes within the network. The CH assignment packet
is an instructional packet, only transmitted by CHs whenever
they have selected an appropriate replacement for themselves
in order to inform the selected node that it ought to replace
the CH.

All three packets utilize the same header composed of
a preamble, link and network layer source and destination
addresses, a packet ID, message ID, payload length, acknowl-
edgement (ACK) setting, energy level indicator, packet type
identifier, packet fragmentation, and CRC fields.

It is important to note at this point, that in concurrence
with the findings of [18], the energy level field only contains
a representation of a node’s energy level. This representation
is in the form of a counter that tallies the number of packets
transmitted and relayed by the node in question. Given that
the cost of a single packet transmission may be fixed, such as
is the case with less versatile transceivers, a packet counter is
deemed to be a more useful representation of energy depletion
than a constant polling of the battery supply’s voltage level.

The operational procedures undertaken by this protocol may
be summarized as follows:

1- Once a non-sink node is activated, it periodically
transmits data packets to the sink node. The node utilizes
CSMA/CA and random back off periods in favour of the
hardware and processing needs of more strict time scheduling
methods. If the non-sink node is a direct child of the sink
node, then it may communicate directly with the sink node.
Otherwise, the message must travel through the node’s CH.
The sink node, having received the message, activates the
source’s position on its map, before generating a new network
topology packet which it then transmits it to every other node
in the network. Any node receiving this packet replaces its
older map with the newly received version.

2- The CH selection process is initiated after a certain
number of packets have been transmitted, representing the
expenditure of a certain level of energy. Once initiated, the

CH first confirms that it has living children by reviewing its
topological map and records of recently relayed messages.
Once confirmed, the CH reviews the average energy of its
children. If the average is higher than the CH’s energy level,
then the CH selects the child with the highest energy for the
position of CH. Otherwise, if the CH has no children, or the
CH’s energy is higher than the average, then the CH remains
a CH until end of the next round. If a child is selected, then
the CH transmits to it a CH assignment message until the
message is acknowledged, or a certain number of retries have
been met. Once one of these requirements are met, the CH
relegates itself to the selected node’s position and transmits a
message to the new CH. If that message is unacknowledged,
then the CH selection process has failed, and the node reverts
and repeats the process until it succeeds.

B. Proposed Fault Tolerance Algorithms

Due to the limitations of the ways in which the literature
has proposed that CH backups, heartbeat messages and self-
monitoring be used, a novel approach to adopting the same
basic concepts of keep alives and CH backups is introduced.
This new method uses three functions to achieve a self-healing
system at the lowest possible overhead cost.

The first of these functions uses data packets as keep alives
instead of dedicated heartbeat messages. This is since every
member of a cluster transmits periodic data packets which
must pass through their respective CH. Likewise, these data
packets are acknowledged by the relaying CH. Each of these
two behaviour are therefore congruent with the concepts of
keep alives. Hence, CHs may use data packets as indicators
as to which children are alive. This would assist CHs during
the CH selection process, in that the CH can now avoid making
selections based on old information; as, without this precaution
in place, the CH could select and assign the role of CH to a
child that had already failed or moved to a different network
position. Likewise, by using acknowledgement packets as
heartbeat messages as well, unacknowledged packets may
therefore be used by child nodes as an indication that their
CH has failed. This allows every child to act as a potential CH
backup. This is possible once of the CH’s children is assigned
a number unique to each of their respective network positions.
If any of the children then meets a consecutive number of
message delivery failures equal to their assigned number, then
that child initiates its CH failure functions. A unique number
is used to avoid having several nodes initiating their functions
at the same time.

The CH failure functions dictate that the node transmits a
series of packets to the CH in close succession to each other
in order to confirm that the CH has genuinely failed. If these
test messages are also unacknowledged by the CH, the node
selects one of its children to replace its network position before
it rises up to take on the role of the failed CH.

Even though each CH backup is assigned a different number
to avoid having several backups initiating CH failure functions
at the same time, the possibility still exists. That is, a tem-
porary communication blackout could cause several backups



to falsely believe that the CH has failed. This would mean
that, eventually, the cluster would in fact have several nodes
operating as its CH. A second function to detect and mitigate
the existence of duplicate nodes within any cluster is therefore
required. This function operates in both a centralized and
distributed manner in that the detection of duplicate nodes
is the responsibility of the sink node while the resolution of
the problem is the task of one of the culprit nodes.

If a sink node receives a message from network position
’A’, physical ID ’1’, and then shortly after, receives a second
message from network position ’A’, but physical ID ’2’, the
sink node assumes that the network position ’A’ is occupied
by 2 nodes. The sink node therefore transmits a message to
the older source informing it that it is a duplicate node. The
node, now aware that it is a duplicate, searches through its
topological map for a free position amongst its children and
descendants. Once found, the node transmits a test message to
that position to confirm that it is in fact free. Once confirmed,
the node relegates itself to that position, resolving the problem
at hand.

It is important to note that the sink node requires that the
older source relegates itself, and not the newer one. This is
as this method does not differentiate between the existence of
duplicate nodes, and the case where a legitimate handover of
a network position through CH selection and assignment may
have occurred. If the latter was the case and the sink node
targeted newer sources, then the cluster would be left without
a CH.

The third and final function attempts to optimize the CH
failure mitigation process by better organizing the CH’s back-
ups. Since each CH backup position requires a different num-
ber of consecutive failures to initiate their CH failure functions,
the one requiring the least number may be considered the
highest backup position. The process may therefore be made
more resilient by ensuring that the highest backup position
is always occupied by the child with the highest amount of
energy remaining. To do so, the CH periodically reviews its
topological map and its children’s energy levels to ensure
that that is the case. However, if the position is found to be
unoccupied, then the child with the highest energy is instructed
to move to that position. On the other hand, if the position is
occupied, but not by the child with the highest energy, then
the two nodes are instructed to switch positions.

C. Hardware and Test-Bed Design

The physical nodes designed are developed within the same
low power and low cost goals and constraints as the overall
network. Each node is made up of an nRF24L01+ transceiver,
an ATMega328-PU microcontroller, a 10K pull-up resistor,
two 22pF capacitors and a 16MHz crystal for clocking. This
design costs 10 USD and, when operated at 3.3V, utilizes 7.5-
8.0 mAh, achieving the aims of developing for a low power,
low cost WSN. A total of 49 of these nodes were loaded on
five breadboards with two further breadboards used as power
rails to make up the entire test bed shown in Fig. 1 [20].

Fig. 1: The Hardware Testbed [20]

Each node is instructed to halt once a certain number of
packets have been transmitted. At that point, the node is
expected to record all of its results on its internal EEPROM
and awaits their manual collection.

The results recorded includes the total number of successful
and failed data and overhead packets transmitted, all the
network positions occupied by the node, the reason it halted,
and the amount of energy the node had when it halted.

In addition to the end-of-sim data, an in system programmer
(ISP) is always connected to the sink node to provide real
time coverage of all network happenings. An ISP may also be
connected to any other node in the network in order to observe
the network’s operations from its point of view. The data
obtained through this kind of monitoring includes the time that
each packet is received, acknowledged, and transmitted by the
monitored node, as well as the packet’s type, physical ID and
network ID source and destination addresses, and the results
of any initiated CH selection, assignment, or fault tolerance
function.

In order to observe the performance of the proposed algo-
rithms under duress, several faulty nodes are programmed for
testing purposes. As described in Section I, a node suffering
from intermittent drops in its link quality may still be selected
as a CH, and may still have nodes join its cluster. In order to
model this behaviour, several nodes have been programmed to
transmit and receive, but to refuse to relay messages on behalf
of other nodes. This way, the node may still participate in
CH selection processes, and act on CH assignment messages,
while maintaining the behaviour expected of a CH that has a
low quality channel connecting it to its children.

III. SYSTEM EVALUATION AND RESULTS

A. Test Behaviour and Testing Parameters

A total of four tests were performed in order to explore the
effectiveness of the developed fault tolerance algorithms. As
required by LEACH, the first two tests used data packets to



Fig. 2: The network topology of tests 1-4 [20].

communicate each node’s energy level information to all other
nodes in the network. The last two tests, however, examine
the approach proposed in Section II-A, whereby energy level
information is included in packet headers.

The first test observed the effect of having only the CH
failure detection and mitigation techniques. The second test
added the duplicate node detection and mitigation functions,
and one faulty node. The third test repeated test two using the
modified packet header and two faulty nodes. The fourth test
added the CH backup optimization functions to test three.

All four tests utilized the network topology shown in Fig.
2, which was designed as such to observe the effect of having
different node distributions [20]. Cluster 1 had a significant
amount of energy associated with a lower CH backup position
than cluster 2. Cluster 3 had an increased number of nodes at
the third layer. Cluster 4 had a much larger size than all of the
other clusters and, finally, cluster 5, was composed of only 2
layers of nodes.

Each of the four tests were run a total of five times, with
each node being given 2000 packet tokens per iteration. The
CH selection and assignment functions were initiated with
every 50th packet transmission. The inter-packet transmission
time for every node was set to (2*N) seconds, where N was
the total number of nodes in the network.

The above testing parameters allowed for the collection of
over 480 hours of simulated runtime. The large amount of data
collected caused us to represent this data in the summarized
forms of Tables I-IV and Fig 3. Table I distributes the nodes
of each test into success rate intervals based on their data
packet delivery success rates. Table II attributes to each failure
type observed the percentage of the total number of failure
messages for which it was responsible in each respective test.
Table III gives an overview of the times at which significant
network failures occurred, and Table IV shows the average
overhead required to operate the implementations of each of
tests 3 and 4. Lastly, Fig. 3 shows the rate of energy token
depletion for each node and for each cluster, for both of tests
3 and 4.

B. Test Results

Test 1 observed the effect of adding only the CH failure de-
tection and mitigation functions to the routing layer of Section
II-A. The results show only 40.7% of nodes achieving over
90% success rates, while the bulk of nodes ranged between
50-80% success rates. This was due to the false detection of
CH failures allowing for the appearance of duplicate nodes.
After the first case of duplicate nodes appeared, any message
passing through their network position was replicated before
exiting from both nodes causing an unnecessary strain on
the network’s energy resources. Also, as the nodes would
acknowledge messages destined for their network position
at the same time, the ACK packets would interfere with
each other such that the message source would believe that
the message delivery failed. This would cause the source to
retransmit and burden the network’s already limited resources
even further. Also, as the duplicate nodes would consistently
interfere with each other’s ACK messages, the children would
then falsely believe that their CH has failed, causing them to
rise up to the role of CH, meaning that the issue of duplicate
nodes is in fact self-perpetuating in nature.

The kind of behaviour described above directly caused over
50% of the recorded packet failures, as well as significantly
impacting the cluster’s lifetimes. Clusters found to suffer from
larger numbers of duplicate CHs, such as clusters 3 and 5,
had longer lifetimes than the other clusters. This was as these
cluster had fewer children and so spent less energy relaying
messages in comparison to other clusters. Instead, the bulk of
the packet tokens were used up at the much slower pace of
generating and transmitting new packets. Also, the increased
number of replicated messages exiting these clusters caused
the destination clusters to have much shorter lifetimes as they
would carry most of the burden of having to route these
messages.

Another factor impacting node lifetimes was LEACH’s re-
quirement that energy level information be transmitted across
the network for accurate CH selection and assignment. This
behaviour was found to cause a very early first death in the



network. This was because, given the inter-packet transmission
time, and the long list of nodes that had to be informed, the
dissemination of energy level information was a very slow
process. Effectively, nodes assigned to CH positions would
rarely receive this information quickly enough to avoid dying
due to the intense energy needs of it being a CH. This
elimination of nodes through over-exhaustion was found to
continue until the number of nodes within each cluster was
reasonable enough to allow for the distribution of energy level
information at a speed ample enough to permit each cluster
to run effective CH selection and assignment processes. In
addition to causing a very early first death, this also allowed
cluster 4 to have a significantly larger lifetime than all other
clusters. This is as, by the time that the network had shed off
many nodes to operate efficiently, cluster 4 would still have
the most number of nodes remaining, and hence, the largest
pool of energy left to spend.

Starting with the problem of duplicate nodes, test 2 at-
tempted to limit their considerable impact by introducing
the duplicate nodes detection and mitigation functions to the
network’s routing layer. The test was performed while having
a single faulty node occupying the position of node 4.

Test 2 observed a reduction in the overall success rates of the
network. Around 11.0% of nodes had less than 50% success
rates. This was in equal parts due to the duplicate mitigation
functions, the faulty transceiver, and the overhead used to
operate the routing layer. To explain, the faulty transceiver,
being the only node that can transmit and receive, but not relay
messages, would always be the node with the highest energy.
This meant that the CH selection process would always assign
it the role of CH. This would cause all of its children to detect
message delivery failures causing them to believe that their CH
has failed. Consequently, a node would rise up to replace a
CH which has not failed, and two nodes would be occupying
the same position. The sink node would then have to inform
the faulty node that it should relegate itself, causing the faulty
node to initiate its duplicate node mitigation functions. This
process repeats continuously meaning that there a persistently
large amount of overhead was constantly travelling through the
network. This, in addition to the amount of overhead required
to circulate energy level information, and confirm that CHs
have failed or that network positions were free, meant that the
majority of failures experienced in the network were mainly
due to this overhead, causing 72.16% of packet failures, and
59.6% of nodes to lie within the 50% to 80% success rate
interval.

Another cause of failure observed during these tests is
associated with nodes operating within the fourth layer of
a cluster. This type of failure was responsible for 10.2% of
the failed messages. Although nodes were never instructed or
programmed to operate within the fourth layer of any cluster,
occasionally, the duplicate mitigation function would fail to
find an empty position within the top three layers for the node
to relegate itself to. The node would therefore relegate itself to
the fourth layer of the cluster. As expected from the findings
of [21] and [23], operating at this distance from the sink node

incurred an increased level of message delivery failures.
In terms of failure times, the slow spread of energy level

information caused an early first death for the same reasons
as test 1. However, in this case, the efficient resolution of
duplicate nodes by the included duplicate mitigation functions
allowed test 2 to have much more equal cluster failure times.

In order to reduce the overhead and quicken the propagation
of energy level information throughout the network, test 3
had energy level information included in packet headers. This
significantly reduced the overhead required to operate the
network. This meant that even in the presence of two faulty
nodes, started at positions 4 and 37, 95.4% of nodes achieved
a success rate of over 90%. This method also meant that each
cluster was able to distribute the energy consumption rates of
all its nodes in a more balanced way, as shown in Fig. 3(a) and
Fig. 3(c), as the required information was now more readily
available. This allowed the network to have improved values
for the recorded lifetimes all around, with the most notable
difference being that the first node failure occurred at almost
7 times the value attained in test 2.

The increase in the CH selection and assignment’s effective-
ness also meant that faulty nodes were quickly isolated away
from any critical roles in the network. Although they were still
selected as CHs, the increase in the network’s efficiency meant
that these nodes would spend very little time as CHs before
receiving duplicate mitigation packets, quickly causing them
to be relegated to the lowest layers of the network. This meant
that their effects on other nodes were effectively curtailed, as
exemplified by the low percentage of nodes achieving less than
90% success rates.

Exploring the failure times further, clusters 1, 2 and 3 had
fairly similar lifetimes. Clusters 1 and 3, having the bulk of
their backup energy at the lowest position, achieved lower
lifetimes than cluster 2. Cluster 3, on the other hand, outlived
cluster 1 due to the energy added to it by including a single
extra node. This however is contrasted by the lifetime of
cluster 4, which had the shortest lifetime of all. This was
because, by having the largest number of nodes in a properly
operating network, cluster 4 was burdened with having to
generate and route the largest amount of messages out of all
the clusters. Cluster 5, operating at only 2 layers, spent the
least amount of energy on relaying, and therefore expended
its tokens at the much slower pace of transmitting original
packets, causing it to outlive all of the other clusters.

In an effort to further improve the success rates achieved by
test 3, test 4 repeated the iterations of test 3 while including
the CH backup optimization functions. Although expected to
extend the network’s lifetime and improve data success rates,
what was in fact observed was an increase in the overhead
used, which was found to be several times the amount required
by the implementation of test 8. The network was found to be
predominantly concerned with maintaining a specific structure
rather than achieving high data delivery rates. This had a
negative impact on the network’s success rates without any
discernible gain in terms of the network’s lifetime.

To elaborate, the decrease in the success rates was primarily



(a) Test 3
(b) Test 4

(c) Test 3
(d) Test 4

Fig. 3: The rate of depletion of the energy tokens of the nodes and clusters of tests 3 and 4.

TABLE I: Distribution of Nodes into Success Rate Intervals

Percentage of Nodes Per Success Rate Interval (%)
Test # >90% 80-90% 50-80% <50%

1 40.7 31.4 25.7 2.1
2 6.5 22.9 59.6 11.0
3 95.4 2.9 1.7 0
4 79.2 17.0 3.8 0

TABLE II: Percentages of Failed Messages vs. Failure Cause

Failure Type Test 1 Test 2 Test 3 Test 4
Scheduling 9.82% 0.25% 31.03% 15.55%
Overhead 37.63% 72.16% 15.75% 33.81%

Transceiver 0% 17.40% 53.22% 50.65%
Layer 4 0% 10.19% 0% 0%

Duplicates 52.55% 0% 0% 0%

due to two specific reasons. First, the elevated levels of
overhead packets traversing the network made it more difficult
to acquire channel time, and increased the chances of mid-

TABLE III: Average Failure Times (Hours:Minutes:Seconds)

Failure Type Test 1 Test 2 Test 3 Test 4
First Failure 00:44:22 01:36:36 10:56:56 12:04:13

Cluster 1 15:24:21 17:27:06 20:34:20 20:21:55
Cluster 2 12:21:17 15:29:56 22:26:45 22:04:45
Cluster 3 26:21:26 18:07:27 21:55:19 20:38:45
Cluster 4 35:53:55 18:08:15 19:32:21 19:00:22
Cluster 5 25:53:39 14:58:39 27:04:04 26:09:21

Failure of Last Living Node 36:15:17 21:00:38 27:04:04 26:09:21

TABLE IV: Average Overhead (% of Total Number of
Packets Transmitted by a Cluster)

Cluster Test 3 Test 4
Cluster 1 8.4% 33.8%
Cluster 2 5% 11.2%
Cluster 3 5.8% 14.8%
Cluster 4 6.6% 23.6%
Cluster 5 4.8% 11.8%

Total 6% 19.6%



air collisions. Second, the selection of the faulty nodes in
clusters 1 and 4 as the primary backup, as they constantly
had the highest energy levels available, once again amplified
their effects on the network’s success rates.

It is important to note that even with these two inhibiting
factors, Fig. 3(b) and Fig. 3(d) show that the implemented
protocol is able to withstand their effect, as exemplified by the
stable and distributed rates of energy token depletion across
each respective cluster.

Other than the aforementioned observations, all other net-
work performance values observed, such as percentages of
failed messages due to scheduling and the faulty nodes, and
network failure times, were very similar to those of test 3 as
no other model principles were modified in test 4 to impact
these variables.

IV. CONCLUSION

A mixed method approach at achieving fault tolerance,
detection and mitigation is proposed for a highly constrained
implementation of LEACH. For a minimal amount of over-
head, the described algorithms allow for high data delivery
success rates while addressing several flaws in the original
designs of LEACH, as well as those found in the fault
tolerance methods advised for LEACH by recent literature.

The approach is tested using a hardware basin atop which a
multi-hopping network of permanent clusters is built in order
to test the proposed methods in a manner relevant to the needs
of recent applications. The development and subsequent use
of low cost, low power nodes of low capabilities attest to
the methods’ ability to guarantee the efficient dissemination
of energy level information, the isolation of non-performing
nodes to non-critical roles, and the gradual depletion of node’s
energy stores, all within the constraints of bare minimum
designs.

The study also verifies that multi-hopping should be limited
to 3 hops from the sink node at most. This is as the deployment
of any more than 3 layers of nested nodes causes a severe
increase in the number of messages which failed to reach
their destination, as well as a significant decrease in cluster
lifetimes.

Lastly, the research proves that the semi-centralized ap-
proach suggested for the optimization of CH backups’ distri-
bution is too costly of an approach for the given deployment,
without any apparent added benefit.
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