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Abstract—As the demand for mobile data continues to grow,
the energy consumption of mobile networks becomes a major
concern. Specifically, base stations account for over 76% of
energy usage in mobile networks. We consider a two-tier cel-
lular system, one offering basic coverage while the other offers
extra capacity. To save energy, existing network features can
opportunistically shut down capacity layer cells when physical
resources are lightly utilized. Nevertheless, this is performed
without guaranteeing coverage cells can maintain the sought user-
centric service quality. To address this challenge, we propose a
machine learning (ML)-aided search approach that dynamically
designs energy-saving configurations for each cell in each hour
while being constrained with a pre-defined quality of service
(QoS) measure. This ML, model was trained using data collected
from 10,283 cells of a live network. We introduce two different
approaches to provide these settings: Adaptive QoS Threshold
Optimization Algorithm (AQTOA) and an Exhaustive Search
(ES) baseline. AQTOA is a low complexity ML-aided search
algorithm designed to determine the optimal shutdown threshold
for capacity cells while ensuring that QoS requirements are met.
Through extensive live network experimentation, the AQTOA
results indicate a 1.8% improvement in energy savings compared
to the earlier static settings models while maintaining a more
strict QoS level than the one addressed in the previous work.

Index Terms—cellular networks, energy saving, green mobile
networks, machine learning, RAN intelligent controller, service
management.

I. INTRODUCTION

In the era of ubiquitous connectivity, mobile networks have
become an indispensable part of modern life, enabling seam-
less communication, access to information, and a plethora of
digital services. However, this surge in mobile network usage
has come at a significant environmental cost. Mobile networks
are responsible for up to 3% of the global energy consumption
[1], a figure projected to further increase as network traffic
continues to grow. This substantial energy consumption not
only translates into higher operating costs for mobile network
operators but also contributes to greenhouse gas emissions by
approximately 2% [2] and exacerbates climate change. Radio
access networks (RANs) consume over 76% of energy in
mobile networks according to [3] with the power amplifier
(PA) being the most energy-intensive component, followed by
baseband processing, radio unit (RU) power requirements, and
cooling systems. Given the pressing need for sustainability,

energy efficiency has become a critical focus for network oper-
ators and researchers alike. Optimizing energy consumption in
mobile networks involves finding a balance between network
performance and energy savings. Although reducing energy
consumption is essential, maintaining the quality of service
(QoS) experienced by mobile users is vital. QoS includes key
metrics such as data rate, latency, and call drop rate, which
are crucial to ensure a satisfactory user experience.

Previous research has explored various techniques for en-
ergy saving in mobile networks, including network densifica-
tion [4]. In [5], a SARSA-based algorithm was developed to
choose the best sleep mode based on the time and traffic load
of the base station while ensuring that the (de)activation time
does not cause service interruption. A reinforcement learning
(RL) approach that minimizes energy consumption in ultra-
dense networks by intelligently switching off small cells based
on traffic load without impacting QoS was proposed in [6]. In
[7], we previously designed static energy-saving configurations
tailored to fit the entire day, successfully demonstrating the
effectiveness of machine learning (ML) in optimizing mo-
bile network energy efficiency. The authors in [8] addressed
the energy optimization problem from the point of view of
multiple-input multiple-output (MIMO) resource usage. Two
ML approaches, based on multilayer perception (MLP) and
recurrent neural network (RNN), were developed to decide
whether the MIMO feature is needed or to turn it off based on
traffic load. However, these techniques often involve trade-offs
between energy consumption and QoS. For example, network
densification can improve coverage and capacity but increases
the overall energy consumption of the network. Similarly, sleep
modes for base stations can reduce energy consumption during
periods of low traffic but can lead to reduced coverage and de-
graded QoS if traffic spikes unexpectedly. Static energy-saving
settings result in conservative settings, potentially missing
additional energy-saving opportunities since the thresholds are
designed to accommodate varying traffic conditions throughout
the day.

To the best of our knowledge, no prior work has addressed
the problem of dynamically shutting off capacity layer cells
throughout the day. In this paper, we propose an improved
ML approach to dynamically optimize network settings for



each cell and hour. This dynamic approach addresses the
limitations of static energy-saving techniques by adapting to
real-time traffic patterns and maintaining QoS. Our ML model
was tested on a live network and proved to aid the network
proactively adjust its configuration by selectively turning off
the capacity cells while maintaining the coverage layer cells.

The remainder of this paper is structured as follows: Section
II investigates the system model and formulates the problem.
Section III presents our ML algorithm as well as two dis-
tinct proposed approaches to address the problem. Section
IV discusses the results of testing our algorithm of a live
network and provides a comparative analysis with our previous
work. Section V concludes the paper, and Section VI outlines
potential directions for future research.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Our system model comprises a two-tier cellular network.
Each tier of radio cells offers a distinct function, namely 1)
basic coverage and 2) capacity. As the tier name may suggest,
coverage cells are responsible for continuous network service
availability utilizing a low-frequency range (e.g., 1800 MHz
band). This corresponds to wider coverage and smaller band-
width. Capacity cells, on the other hand, operate at higher fre-
quency bands (e.g., 2600 MHz band), providing additional ca-
pacity through larger bandwidth but offering reduced coverage.
In this work, we assume that, in each serving sector, a single
coverage cell coexists with two capacity cells. Furthermore, we
assume that the two capacity cells, hosted on the same RU, are
simultaneously activated or deactivated offering an opportunity
to shut down the most energy-consuming element in the base
station, the PA. The system imposes a network feature that
monitors the physical resource blocks (PRBs) used across all
three cells and calculates utilization relative to the coverage
cell’s available PRBs. If this utilization falls below a specified
threshold, both capacity cells are deactivated.

Our goal is to minimize energy consumption by opportunis-
tically shutting down capacity cells whenever possible under
a strict constraint that the coverage cells can handle all the
traffic without compromising the mandated QoS levels defined
by a minimum downlink (DL) average user throughput. Our
objective is to determine the optimal threshold that maximizes
energy savings while preserving QoS.

III. PROPOSED APPROACHES

Our approach to satisfy the aforementioned objective in-
cludes an ML-based predictive model accompanied by a
search algorithm. The ML-based predictive model predicts the
average DL throughput based on a subset of key performance
indicators (KPIs), which are readily available in cellular net-
works. The search algorithm identifies an appropriate shutting-
down threshold for the capacity cells. We propose two search
algorithms, namely, Adaptive QoS Threshold Optimization
Algorithm (AQTOA), and an Exhaustive Search (ES) baseline.

A. Dataset and ML-Based Throughput Predictive Model

To build our ML model, we collected a dataset from a 4G
live network in Egypt. Data points were collected from 10,283
cells. Each data point includes the following KPIs, which were

carefully selected based on correlation analysis and domain
expertise. Although the correlation matrix is not included due
to space constraints, the selected KPIs were found to have
strong correlation to the target variable. The same approach
can be easily applied to a 5G network.

o DL PRB Utilization (%)

o Average DL Active Users

e DL Traffic Volume [MB]

o Average Modulation and Coding Scheme (MCS)
o Average Rank Indicator (RI)

o Average DL User Throughput [Mbps]

We treat the first 5 KPIs as features (i.e., inputs) of the ML
model, while the average DL user throughput is the target
variable (i.e., prediction output). The number of used data
points is 1,370,886. The dataset is divided as follows: 80%
of the data points were used for the training phase, 10% for
validation, and the rest 10% were used for testing.

The collected data is used to train and test an XGBoost
regressor model for throughput prediction. XGBoost regressor
is a scalable and efficient implementation of gradient boosting
designed for regression tasks [9]. Through a careful process
of fine-tuning, we settled for the following set of hyper-
parameters; 1000 estimators, 0.08 learning rate, 10 maximum
depth, and 0.9 subsample.

B. Adaptive QoS Threshold Optimization Algorithm (AQTOA)

Our proposed scheme uses the pre-trained regression model.
This model is fed the aggregated KPIs of the coverage cell and
the two capacity cells as input to predict the corresponding
average DL user throughput. The reason for having this
aggregation is to simulate the capacity cells shutdown case.
Our algorithm then iteratively changes the aggregated DL PRB
utilization (%) with a dynamic step to get the highest DL PRB
utilization (%) threshold that meets our QoS constraint.

AQTOA, presented in Algorithm 1, is described as follows:

1) Aggregation and Prediction: Lines 6-11 aggregate the
data of the coverage cell and capacity cells and predict
the throughput of the aggregated cell. This throughput
is checked whether it falls between the QoS constraint
and the QoS constraint + prediction error (A). If so,
the corresponding utilization is chosen as the needed
threshold. If not, utilization is incremented/decremented
depending on the predicted throughput by the initial step
size.

2) Threshold Design: In lines 19-39, the utilization is
incremented/decremented on each iteration depending
on the predicted throughput and the previous step until
the predicted throughput falls within the desired range
or the utilization reaches the min/max values.

3) Handling Infinite Loops: During looping, all (utiliza-
tion, throughput) pairs are saved into a dictionary, which
is useful to avoid having an infinite loop. This is detected
by checking whenever a previously visited pair is re-
visited. This case occurs when 2 consecutive utilization
values with corresponding predicted throughput satisfy
QoS < throughputpreqd < QoS + A. In such a case,



the smaller utilization value is chosen to be our desired
threshold. This can be seen in lines 41-42

C. Exhaustive Search (ES)

Our aim is to implement an ES algorithm for the problem
to serve as a baseline for performance evaluation. In this
approach, we are defining a 5D space consisting of (DL PRB
Utilization (%), Average DL Active Users, DL Traffic Volume,
Average MCS, Average RI), Those features are fed as input
to the ML predictor to get the corresponding average DL user
throughput then we are able to set a threshold for each tuple.

We start by defining the sampling resolution of the afore-
mentioned space. Here, n, m, [, p, and o represent the number
of points in the parameter space for DL PRB Utilization (%),
Average DL Active Users, DL Traffic Volume (MB), Average
MCS, and Average RI, respectively. The sampling resolution
was adjusted to balance the computational efficiency as well as
match the level of detail required for our algorithm as follows:

e n: 100 uniform samples in [0, 100].

e m: 60 uniform samples in [0.25, 15].

e [: 60 uniform samples in [0.5, 30].

 p: 28 uniform samples in [1, 28].

e 0: 21 uniform samples in [1,2].

We then predict the corresponding throughput for each point in
that space using the regression model in subsection III-A. We
then group and filter all the resulting data to get the highest
possible threshold for each (Average DL Active Users, DL
Traffic Volume (MB), Average MCS, Average RI) tuple that
meets our QoS constraint.

D. Computational Complexities

Table I compares the computational complexities between
the proposed AQTOA and the ES approach for designing the
required thresholds over 74a, hours.

The ES approach consists of two offline steps; 1) creating
the table and 2) grouping all possible tuples/combinations.
This requires significant computational resources and can be
precomputed. Furthermore, the third step, which is performed
online to calculate the thresholds, introduces a high compu-
tational cost. Notably, for small values of ngu,, the overall
complexity is dominated by the term m x [ X p X o, which
grows rapidly with the size of the parameter space.

In contrast, the AQTOA offers a significantly lower com-
putational complexity, as it eliminates the need for exhaustive
exploration of the parameter space. By leveraging an adaptive
iterative approach, AQTOA focuses on optimizing the thresh-
olds directly during the online step, making it more efficient
and scalable, especially when handling large datasets. This
reduction in computational overhead highlights the superiority
of AQTOA in terms of complexity.

IV. PERFORMANCE EVALUATION

In this work, and without loss of generality, we impose
a DL average user throughput of 8§ Mbps as the QoS con-
straint, which aligns with the market demands and application
requirements of most operators and avoids any service-level
violations. In addition, we also impose upper and lower bounds

Algorithm 1 Adaptive QoS Threshold Optimization (AQTOA)

: Initialize threshold =0

: Initialize LastAct =0

. Initialize Ugep = 1

. Initialize VisitedStates = {}

: Let A be the prediction error

: Aggregate the coverage and capacity cells KPIs to get the
aggregated cell (cqq¢) KPIs.

. Initialize U = utilization.ggregated-

: Predict DL average user throughput of 444 (D).
9: if QoS < T < QoS + A then

10: threshold <~ U

AN AW N =

[N

11: else

12: if 7> QoS + A then
13: U+ U+ Usgep
14: LastAct <+ 1

15: else if 7' < QoS then
16: U—U—=Ugep
17: LastAct + 0

18: end if

19: Predict T R
20: while ~ (QoS <T < QoS + A) do

21: VisitedStates[U] < T

22 if 7> QoS + A and LastAct = 1 then

23: Ustep <~ Ustep X 2

24: LastAct <+ 1

25: U<+ U+ Ugep

26: else if 7' < QoS and LastAct = 1 then

27: Ustep —1

28: LastAct + 0

29: U—U—Ugpep

30: else if 7' > QoS + A and LastAct = 0 then

31: Ugep <1

32: LastAct + 1

33: U<+ U+ Ugep

34: else if 7' < QoS and LastAct = 0 then

35: Ustep — Uste[) X 2

36: LastAct + 0

37: U<+ U—Ugep

38: end if

39: U + max(Upin, U)

40: U + min(U, Upnaz)

41: if U in VisitedStates.keys() then

42: Check for 2 consecutive U values with corre-
sponding 7' > QoS + A and < QoS respectively

43: U+ minke{i’iﬂ} Uy

44: break

45: end if

46: Predict T

47: if 7> QoS + A and U = U,,,, then

48: break

49: else if 7' < QoS and U = U,,;,, then

50: break

51: end if

52: end while

53: end if

54: threshold < U




TABLE I: Computational Complexity

Approach
AQTOA

Complexity

O(ndata)
O(nxmX1lxpxo)

Creating Table

ES | Grouping and filtering
Thresholds design

O(nxmX1lxpxo)

O(ngata +m X1 X p X 0)

of 80% and 20%, respectively, for the threshold. To account
for the ML model prediction error, we take A = 10%. In the
evaluation process, we first compare the designed thresholds
using both approaches. Then, we continue our assessment
with our proposed algorithm AQTOA and focus on three key
metrics:

1) Shutdown time percentage for capacity cells: This
metric indicates the percentage of time, in which ca-
pacity cells are deactivated. A higher percentage reflects
more energy-saving behavior.

2) Energy consumption (kWh): Measurement of total
energy consumed during the evaluation period.

3) Average user throughput: Assessing the user experi-
ence by monitoring the average data rate in the coverage
cells. This metric ensures that the implemented energy-
saving measures maintain the QoS constraint.

To evaluate the effectiveness of our proposed energy-saving
framework, three distinct configurations were implemented on
10 different sectors across the network using the thresholds
obtained from AQTOA.

1) Low traffic window: The energy-saving feature was

activated only during the low-traffic period between 2
AM and 7 AM using a fixed threshold.

2) Static settings: A fixed threshold value was applied to
the energy-saving feature throughout the entire day (the
lowest obtained hourly threshold).

3) Dynamic settings: The energy-saving feature was acti-
vated based on hourly thresholds that adjust according
to the traffic load and PRB utilization (%) per hour.

TABLE II: XGBoost model performance metrics

Model
XGBoost

MAPE R2
95% | 0.928

MAE
1.66

Table II shows the performance metrics of the model used
for throughput prediction.

Fig. 1 illustrates the average utilization thresholds obtained
using both the proposed AQTOA and the ES approach. The
thresholds shown represent the average across 10 sectors.
The results demonstrate that both methods achieve nearly
identical thresholds. However, AQTOA achieves these results
with significantly lower computational complexity, making it
a more efficient and practical solution compared to the ES.

Fig. 2 presents the hourly ratio of time during which all
capacity cells were shut down for the three configurations.
While both static and dynamic approaches outperformed the
low traffic window, an increase in the capacity cell shutdown
time by 5.23% is achieved using the dynamic settings.
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Fig. 1: Thresholds Comparison.

! ! !
I 1 Low Traffic
100 — I 8 Static Settings

I 1 Dynamic Settings
|
)

10 15 20
Hour

0]
o
[

D
o
[

B
o
|

DO
o
|

Fig. 2: Percentage of capacity cells shut-down time.

[
800 — 744

714
637 624
600 -
400 - -
200 ~ .
0

Feature Off Low Traffic ~ Static Settings Dynamic Settings

Fig. 3: Energy consumption (kWh).



40 - / n
= 35 »
= /\\/J\/
< 30 2
g 4
S 25 n
g
2 20 n
=
o)

O 15 n
= Feature Off
g 10 —e— Low Traffic .
= . .
5a) 5| —e— Static Settings |
—e— Dynamic Settings
0 | | | | |
0 5 10 15 20
Hour
Fig. 4: Hourly energy consumption.
| | |
30 - 11 Low Traffic
I 1 Static Settings
| I Dynamic Settings
20 -

Average User Throughput (Mbps)

0" | | ! |
0 5 10 15 20

Hour
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Fig. 3 shows the total energy consumption for the coverage
and capacity layers RUs which shows 16.1% (120kWh) overall
energy saving using the proposed dynamic settings, compared
to only 14.3% (107kWh) using the static settings. The dynamic
settings approach achieved 1.8% more energy saving (13kWh)
compared to the old static settings approach.

In Fig. 4 we compare the hourly energy consumption for
the 4 scenarios. The figure shows that the proposed dynamic
settings scenario offers less energy consumption than the static
settings due to the increase in the shutdown time.

In Fig. 5 the hourly average DL user throughput over the
coverage layer is demonstrated which shows that the gain in
energy consumption and shutdown time comes only at a cost
of 1.05% decrease in the average DL user throughput.

V. CONCLUSION

This paper presented a novel ML-based approach to op-
timize energy consumption in multi-layer mobile networks.
By dynamically adjusting capacity layer shutdown thresholds

on an hourly basis, our proposed algorithm demonstrated a
1.8% improvement in energy savings compared to the static
threshold approach. This enhancement was achieved while
rigorously adhering to predefined QoS constraints, ensuring
an uninterrupted user experience. The results underscore the
potential of intelligent, data-driven techniques in optimizing
network performance and resource efficiency.

Future research directions can explore the broader environ-
mental impact of these approaches and quantify the reduction
in greenhouse gas emissions. Furthermore, investigating hier-
archical energy-saving techniques, such as selectively shutting
down MIMO branches before deactivating entire capacity
cells, is a promising avenue for further optimization. Given
the growing adoption of open radio access network (ORAN)
architectures, adapting the proposed framework to the dis-
tributed and cloud-native nature of ORAN networks is an area
for future research.
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