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Abstract—This paper studies the queues stability in a random
access network in which the nodes have finite energy sources. The
network consists of two nodes, each having a battery for energy
storage. Each transmission consumes a fixed amount of energy,
and the batteries are replenished through energy harvesting.
Moreover, the nodes leverage the feedback information for
collision resolution. In case of a collision, the destination stores the
collided packets, and sends negative acknowledgement (NACK).
Once the NACK is heard, one of the nodes retransmits its collided
packet. The destination uses the retransmitted packet and the
stored collided packets to recover the two packets involved
in the collision. Therefore, the two nodes are served in two
transmissions, but the retransmitting node has used more energy
in the process. To characterize the stability region of this system,
each node is modeled with two queues, the first for storing packets
and the second models the energy in the battery. The random
access nature of the network, as well as the interdependence
between the battery and packet queues in each node, result in
an interacting system of queues. To decouple this interaction,
and characterize the stability region, we resort to a dominant
system approach for the analysis. The stability region obtained
is compared with the stability region of the system without energy
constraints, and the losses due to finite energy are identified.

I. INTRODUCTION
Energy harvesting and finiteness of energy have gained a lot

of interest recently. Several works have considered the losses
in connectivity periods due to the limited available energy. De-
spite the advancement in energy harvesting and rechargeable
batteries, the study of networks with energy harvesting nodes
is still in its infancy. The common objectives were usually to
maximize the lifetime of the network whose nodes are powered
by rechargeable batteries, while maintaining a certain degree
of connectivity [1].
Leveraging the feedback information can provide a degree

of coordination between the nodes of a random access network
[2]. This can result in a lower number of collisions, and hence,
a reduction in energy consumption. Feedback information was
exploited in several works related to cognitive radio networks.
Secondary users are allowed to overhear the automatic repeat
request (ARQ) [3] sent from primary receiver to primary
transmitter, and take channel access decisions based on the
overheard feedback, as introduced in [4].
This paper focuses on the effect of finite energy sources

and energy harvesting on the stability of a random access
network. We consider a network with two nodes. Each having
a queue to store packets, and a battery to store energy.
The process of energy consumption from the battery during

transmission, and its replenishment through energy harvesting
is modeled by considering the battery as a queue with arrival
and service rates determined by the energy harvesting and
consumption rates, respectively. When a node has packets in
its packet queue, it will attempt to transmit the packet at the
head of the queue with some access probability if there is
enough energy in its battery queue. If the transmission is
successful, the packet is dropped from the queue. In case of
a collision, the destination stores the collided packets, and
sends negative acknowledgement (NACK). Making use of the
NACK message, one node refrains from any transmission
attempts, while the other node retransmits the collided packet.
The destination can then use the retransmitted packet and the
stored collided packets to recover the two packets involved
in the collision. Therefore, the two nodes are served in two
transmission attempts, but the retransmitting node has used
more energy in the process.
In a random access network, the stability analysis usually

involves interacting queues. For the slotted ALOHA protocol,
the stability region is characterized for the case ofM = 2 and
M = 3 interacting queues as well as the case of M > 3 with
symmetric arrivals. The stability region for the general case
of M > 3 with asymmetric arrivals is still an open problem
and only inner achievable bounds are known. Recently, many
papers have considered the problem of interacting queues in
different contexts. For example, [5] considers the problem of
interacting queues in a TDMA system where a relay is used
to help the source nodes in forwarding their lost packets.
In [6], the stability of interacting queues under a random
access protocol in the context of Cognitive Radio Network was
derived. In [7], the stability region of two interacting queues
under random access protocol where the two queues harvest
energy was characterized. Other works can be found in [8],
[9], where derivations of the stability regions in the context of
different cognitive radio networks were considered.
To the best of our knowledge, the problem of characterizing

the stability region of the random access protocol with feed-
back leveraging and energy harvesting has not been considered
before.

II. SYSTEM MODEL

Fig. 1 depicts the model of the system under consideration.
The system is comprised of two nodes transmitting to a
common receiver in a random access fashion. Each node
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Fig. 1: System model

has an infinite queue, Qi, i = 1, 2, to store fixed length
packets. The arrival processes at the two queues are modeled as
Bernoulli arrival processes with means λ1 and λ2, respectively
[7]. Under our system model assumptions, the average arrival
rates are λ1 and λ2 packets per time slot, and are bounded as
0 ≤ λi ≤ 1, i = 1, 21. We can assume that packets arrive at
the start of the time slots.
To store energy, each node has a battery, also modeled as

two queues, B1 and B2. Energy is assumed to be harvested
in a certain unit and one unit of energy is consumed in
each transmission attempt. The energy harvesting processes
are modeled as Bernoulli arrival processes with means δ1 and
δ2, respectively. Under our system model assumptions, the
average energy arrival rates are δ1 and δ2 energy units per
time slot, and are bounded as 0 ≤ δi ≤ 1, i = 1, 2 [7].
In this system, we consider a node to be active if both

its packet queue and battery are nonempty at the same time,
and idle otherwise. The channel is slotted in time and a slot
duration equals one packet transmission time. The channel is
modeled as a collision channel, where packet loss results only
in the case of simultaneous transmissions from the two nodes.
If only one node attempts transmitting at a given time slot,
the packet is considered to be correctly received [7], [10]. If
a node is active in a given time slot, it will attempt to access
the channel with probability pi, i = 1, 2.
In the case of a collision, nodes in our system leverage the

feedback information received from the destination. When the
two nodes attempt to transmit their packets simultaneously, the
two packets collide, and the destination is unable to decode any
of them. The destination stores the collided packets and sends
a NACK message. Upon receiving the NACK message, node 2
(Q2) will back off and node 1 (Q1) will retransmit its collided
packet. The destination then uses the retransmitted packet and
the stored collided packets to recover the two collided packets.
Therefore, the two nodes are served in two time slots, but the
retransmitting node consumes more energy than the backing
off node.

1The maximum service rate in our model is 1 packet/slot, since the slot
duration equals one packet transmission time, then the arrival rates must be
less than 1 otherwise the system will be unstable.

III. THE STABILITY REGION FOR THE FEEDBACK-BASED
RANDOM ACCESS WITHOUT ENERGY HARVESTING
To set the benchmark, we will start by characterizing the

stability region for the feedback-based random access scheme
without energy constraints.
Stability can be loosely defined as having a certain quantity

of interest bounded. In our case, we are interested in the queue
size being bounded. For an irreducible and aperiodic Markov
chain with countable number of states, the chain is stable if and
only if it is positive recurrent, which implies the existence of
its stationary distribution. For a rigorous definition of stability
under more general scenarios see [10] and [11].
If the arrival and service processes of a queueing system

are strictly stationary, then one can apply Loyne’s theorem to
check for stability conditions [12]. This theorem states that
if the arrival process and the service process of a queueing
system are strictly stationary, and the average arrival rate is
less than the average service rate, then the queue is stable,
otherwise it is unstable.
In our system, and due to random access and possible

collisions, the service rate of one node’s packets queue de-
pends on the state of the other node’s packets queue (as well
as the state of the batteries in both nodes, in the case of
energy constraints). This results in an interacting system of
queues, and complicates the stability region characterization.
To decouple the queues interaction, we resort to the Dominant
System concept proposed in [10] to characterize the stability
region of the slotted ALOHA random access scheme. We will
define two dominant systems tailored to match our feedback-
based random access scheme. In each of the two systems we
will determine the boundaries of the stability region. Finally,
the stability region of our system is obtained as the union of
the two dominant systems stability regions.
In a dominant system, we define a system that “stochasti-

cally dominates” our system, that is the queues lengths in the
dominant system are always larger than the queues lengths
in our system if both, the dominant system and our system,
start from the same initial state and have the same arrivals and
encounter the same packet collisions.

A. Dominant System 1
In this dominant system, we assume that Q2 always have

packets to transmit; even if the queue is empty, dummy packets
are transmitted from Q2. Clearly this will set a dominant
system to our system since the transmission of dummy packets
can only result in more collisions and packet losses. If for a
given arrival rate pair (λ1, λ2) this dominant system is stable
then clearly our system will be stable. Therefore, the stability
region of this dominant system will provide an inner bound
for our system’s stability region.
Under this dominant system assumptions, the Markov chain

describing the evolution of Q1 is shown in Fig. 2. The Markov
chain has two classes of states, namely, kF and kR and
k = 0, 1, 2, · · · . The subscript F denotes first transmission
states and the subscript R denotes retransmission states. In
the retransmission states, Q1 packet will always be delivered
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Fig. 2: Queue 1, Q1, Markov chain model for Dominant System 1.

since there is no collisions in these states (Q2 is backing
off). Q2 packet is recovered from the retransmitted packet
of Q1 and the collided packets from previous state. In these
retransmission states, either Q1 length decreases by 1 if no
arrival occurs to the queue or the length will remain constant
if an arrival occurs since the packet on the head of the queue
is successfully transmitted with probability 1.
The stability condition for Q1 is given in the following

lemma, which is proved in Appendix A.
Lemma 3.1: For the system to be stable, the arrival rates for

Q1 and Q2 in Dominant System 1 must satisfy the following
two conditions.

λ1 <
p1

1 + p1p2
, λ2 <

p2(1− λ1p2 + λ2
1p2 − λ1)

(1− λ1)
. (1)

B. Dominant System 2
In this dominant system, we assume that Q1 always has

packets (dummy packets are sent if the queue is empty).
By the same argument used with dominant system 1, we

can find the stability condition for dominant system 2 in the
following lemma.
Lemma 3.2: For the system to be stable, the arrival rates for

Q1 and Q2 in Dominant System 2 must satisfy the following
two conditions.

λ1 <
p1(1− λ2p1 + λ2

2p1 − λ2)

(1− λ2)
, λ2 <

p2
1 + p1p2

. (2)

C. Overall Stability Region
The following Lemma characterizes the stability region for

fixed random access probabilities, p1 and p2, for Q1 and Q2,
respectively.
Lemma 3.3: For a fixed random access probability vector

p = [p1 p2]T , the stability region R(p) of the feedback-based
random access without energy constraints is the union of the
two regions obtained from dominant systems 1 and 2, and is
described by

λ2 <
p2(1− λ1p2 + λ2

1p2 − λ1)

(1− λ1)
when λ1 <

p1
1 + p1p2

(3)

and

λ1 <
p1(1− λ2p1 + λ2

2p1 − λ2)

(1− λ2)
when λ2 <

p2
1 + p1p2

(4)

Proof: Here we provide a sketch of the proof due to
space limitations. The result in Lemma 3.3 can be proved
using the tool of stochastic dominance presented in [10]. The
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Fig. 3: The stability regions for Random Access with
Feedback, and Time Division schemes.

indistinguishability argument at the stability region boundary
states that if the original system is unstable then its queues
will saturate and they will always have packets to transmit;
therefore at the boundaries of the stability region of the
original system, the original system will be indistinguishable
from the dominant system and thus has the same stability
region boundaries [10].
The next theorem characterizes the entire stability region.
Theorem 3.4: The boundary of the stability region, R, of

the feedback-based random access without energy constraints,
is defined as the union

R =
⋃

p∈[0,1]2

R(p). (5)

This union can be characterized as λ1 + λ2 = 1.
Proof: Here we provide a sketch of the proof due to space

limitations. It can be easily proved that the stability region’s
boundary given by λ1 + λ2 = 1 is spanned by the points
(

λ1 = p1

1+p1p2
,λ2 = p2

1+p1p2

)

, with p1 = 1 and 0 ≤ p2 ≤ 1

for 0 ≤ λ2 ≤ 1
2 and with p2 = 1 and 0 ≤ p1 ≤ 1 for

1
2 ≤ λ2 ≤ 1. These access probabilities will achieve the λ1 +
λ2 = 1 upper bound since if p1 = 1 or p2 = 1, then p1

1+p1p2
+

p2

1+p1p2
= 1.

In Fig. 3, we have plotted the regions R(p), for p1 and p2
ranging from 0 to 1 with a step of 0.01, we also show the
boundary of the stability region for the time division multiple
access (TDMA) scheme. From the figure, we can conclude
that both systems (TDMA and our proposed system) have the
same stability region.
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IV. THE STABILITY REGION FOR THE FEEDBACK-BASED
RANDOM ACCESS PROTOCOL WITH ENERGY HARVESTING
In this section, we characterize the stability region of the

feedback-based random access scheme with energy harvesting,
and identify the reduction in the stability region due to energy
finiteness. As mentioned before, the queues are interacting,
which can be decoupled using the dominant system technique.
In the dominant system used here (“Dominant System 3”), we
assume that every queue always has packets to transmit.
It is worth noting that, a node in this system is assumed to

be active if both its packet queue and battery are nonempty at
the same time, and idle otherwise. The battery effect is taken
into consideration if the energy harvesting rate is less than or
equal to the energy consumption rate, and ignored otherwise.
So we should first study the conditions under which the effect
of the batteries will not be ignored. To figure out those, we
should start by calculating the energy consumption rate at both
batteries, B1 and B2.
In this dominant system, the batteries are assumed to be

saturated. This means they always have energy to consume.
In this case, the transmission state of B1 can be represented
by the two-state Markov chain shown in Fig. 4(a); note that
in this case queue B1 will be either in the Transmission state
denoted by F or in the Retransmission state denoted by R
in Fig. 4(a). Fig. 4(b) shows the Markov chain model for B2,
which has two states denoted by ON when B1 is in the F state
and OFF when B1 is the R state (when Q1 is in the R state
Q2 will be in the back off, OFF state). It is straightforward
to show that the steady state distributions for the two Markov
chains shown in Fig. 4 are given by

πF = πON =
1

1 + p1p2
, πR = πOFF =

p1p2
1 + p1p2

. (6)

The energy consumption rate µ′′

1 of B1 is given by

µ
′′

1 = p1πF + πR =
p1(1 + p2)

1 + p1p2
. (7)

The energy consumption rate µ′′

2 of B2 is

µ
′′

2 = p2πON =
p2

1 + p1p2
. (8)

So the conditions under which the batteries affect the system
are stated in the following lemma.
Lemma 4.1: For a given access probabilities, p1 and p2, the

finiteness of energy causes losses in the stability region if

δ1 ≤
p1(1 + p2)

1 + p1p2
, δ2 ≤

p2
1 + p1p2

. (9)
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Then we calculate the fractions of time when B1 and B2 are
being active which follow from Littles theorem. The fractions
of time B1 and B2 are active, χ1 and χ2, are given by

χ1 =
δ1(1 + p1p2)

p1(1 + p2)
, χ2 =

δ2(1 + p1p2)

p2
. (10)

In the sequel, we analyze three different systems: system A,
system B, and system C. In system A,Q2 has energy constraint
while Q1 does not. In system B, Q1 has energy constraint
while Q2 does not. In system C, both Q1 and Q2 have energy
constraints. For each system, we derive the stability condition
for each queue and get the boundary of the stability region.

A. System A
In this system, we have two different cases. If δ2 > p2

1+p1p2
,

the role of B2 is ruled out as the energy arrival rate is greater
than the energy consumption rate and the energy queue will
saturate. The steady state distribution of the two state Markov
chains shown in Fig. 5 for Dominant System 3 with χ1 =
χ2 = 1 can be easily derived. This leads to the following
stability condition.

λ1 <
p1

1 + p1p2
, λ2 <

p2
1 + p1p2

. (11)

For the other case with δ2 ≤
p2

1+p1p2
, the energy queue B2

will affect the stability condition. By a parallel argument, we
can find the stability condition to be given as follows.

λ1 <
p1

1 + p1p2χ2
, λ2 <

p2χ2

1 + p1p2χ2
. (12)

The stability region of system A can be found as the union
over 0 ≤ p1 ≤ 1 and 0 ≤ p2 ≤ 1 of the stability regions given
in (11) with δ2 > p2

1+p1p2
, and in (12) with δ2 ≤

p2

1+p1p2
.

The boundary of the stability region for system A can be
proved to be given as (proof is omitted due to space limitation)

λ1 + λ2 = 1 and λ2 ≤ δ2. (13)

In Fig. 6, the regions derived for the dominant system for
system A are plotted in green. p1 and p2 range from 0 to 1 with
a step of 0.01 and δ2 = 0.8. We also plotted the boundary of
the stability region the system without energy constraint. From
the figure, we can conclude that due to the energy constraint,
there is a loss in the stability region recognized by the white
space between the stability boundaries of the systems. This
loss occurred as Q2 cannot be served at a rate greater than the
energy harvesting rate. This means, if Q2 only gains access
to channel, its throughput cannot exceed its energy harvesting
rate. This illustrates why the stability region of the system
with energy constraint cuts the λ2 axis at λ2 = δ2.
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Fig. 6: The stability regions for Random Access with
Feedback, and Random Access with Feedback and Energy

harvesting in B2 for δ2 = 0.8.

B. System B
In this system, we have two different cases. If δ1 >

p1(1+p2)
1+p1p2

, the role of B1 is ruled out. The stability condition
in this case is as stated above in (11).
In the case where δ1 ≤

p1(1+p2)
1+p1p2

, the effect of B1 is
taken into consideration. Following a similar approach to that
applied to system A, the stability condition in this case can
be written as

λ1 <
p1χ1 − p1p2χ1(1− χ1)

1 + p1p2χ1
, λ2 <

p2 − p1p2χ1(1− χ1)

1 + p1p2χ1
.

(14)
To find the boundary of the stability region, we find the

union over 0 ≤ p1 ≤ 1 and 0 ≤ p2 ≤ 1 of the stability regions
given in (11) and in (14). For the region defined in (14), we
should either maximize λ1 for a given λ2 or maximize λ2 for
a given λ1. We consider maximizing λ2 = p2−p1p2χ1(1−χ1)

1+p1p2χ1

under the condition λ1 ≤
p1χ1−p1p2χ1(1−χ1)

1+p1p2χ1
. It can be easily

proved that λ2 is monotonic decreasing in p1 and monotonic
increasing in p2. Based on this observation, and using standard
optimization analysis, it can be proved that the boundary of
the stability region for δ1

2 ≤ λ1 ≤ δ1 is spanned by

p∗2 =
δ1
λ1

− 1, p∗1 =
λ1

λ1 − δ1 + 1
. (15)

From the last equation, it can be easily proved that the
boundary of the stability region for δ1

2 ≤ λ1 ≤ δ1 is given
by

λ2 =
(δ1 − λ1)(λ1 − δ1 + 1)

λ1
for

δ1
2

≤ λ1 ≤ δ1. (16)

For 0 ≤ λ1 ≤ δ1
2 , the boundary of the stability region is

λ2 = 1− λ1 and is spanned by p∗1 = 1 and 0 ≤ p2 ≤ 1. Note
that in this region, the boundary of the stability region is not
affected by the energy constraint since if λ1 < δ1

2 , B1 will
always be saturated which can be explained as follows. If we
consider the extreme case in which the transmission from Q1

always results in a collision, then every data packet from Q1

will need two energy packets (one for the initial transmission
and one for the retranmission) and if λ1 ≤ δ1

2 , then the δ1
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Fig. 7: The stability regions for Random Access with
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harvesting in B1 for δ1 = 0.8.

energy arrival rate can always guarantee that B1 will never be
drained out of energy.
The boundary of stability region of the whole system can

be characterized as follows.

λ2 =

{

1− λ1 0 ≤ λ1 ≤ δ1
2 .

(δ1−λ1)(λ1−δ1+1)
λ1

δ1
2 ≤ λ1 ≤ δ1

(17)

In Fig. 7, the regions derived from the dominant system
for system B are plotted in green. p1 and p2 range from 0
to 1 with a step of 0.01 and δ2 = 0.8. From the figure, we
can conclude, that due to the energy constraint, there is a loss
in the stability region recognized by the white space between
the boundaries of both systems. This loss occurred as Q1 will
not be served at a rate greater than its energy harvesting rate.
Moreover, we can see that the stability region loss due to
energy constraint in system B is more than the loss in system
A. This can be readily explained since in system B, the queue
with the energy constraint is the one used in retransmissions,
hence some collision-free retranmission slots can be lost due
to energy depletion at the retransmitting node, which is not
the case in system A.

C. System C
In this system, we have four different cases depending on

comparing δ1 and δ2 to p2

1+p1p2
and p1(1+p2)

1+p1p2
, respectively.

In the first case, δ1 > p1(1+p2)
1+p1p2

and δ2 > p2

1+p1p2
, the role

of both batteries is ruled out. The stability condition in this
case is as stated before in (11).
In the second case, δ1 > p1(1+p2)

1+p1p2
and δ2 ≤

p2

1+p1p2
, we

can rule out B1 as the arrival rate of energy units is greater
than the energy consumption rate of this queue. The stability
condition in this case is as stated before in (12).
In the third case, δ1 ≤

p1(1+p2)
1+p1p2

and δ2 > p2

1+p1p2
, the role

of B2 is ruled out and the stability condition in this case is as
stated before in (14).
In the fourth case in which δ1 ≤

p1(1+p2)
1+p1p2

and δ2 ≤
p2

1+p1p2
,

the effect of both batteries is taken into consideration. In this
case, the transmission state of Q1 and Q2 can be represented
by the two-state Markov chain model shown in Fig. 5(a) and
Fig. 5(b), respectively. It is straightforward to show that the
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Fig. 8: The stability regions for Random Access with
Feedback, and Random Access with Feedback and Energy

harvesting in both batteries for δ1 = δ2 = 0.8.

steady state distributions for the two Markov chains shown in
Fig. 5 are given by

πF = πON =
1

1 + p1p2χ1χ2
, πR = πOFF =

p1p2χ1χ2

1 + p1p2χ1χ2
.

(18)
The service rate for Q1 in Dominant System 3, is given by
µ1 = (p1(1− p2)χ1χ2 + p1(1− χ2)χ1)πF + χ1πR

=
p1χ1 − p1p2χ1χ2(1− χ1)

1 + p1p2χ1χ2
,

(19)

where Q1 is served with probability p1(1−p2)χ1χ2+p1(1−
χ2)χ1 in the F state. In the R state, Q1 is served with
probability χ1, which is the probability of having an energy
unit in B1 to support the retransmission.
Similarly, the service rate for Q2 in this Dominant System,

is given by

µ2 = (p2(1 − p1)χ1χ2 + p2(1− χ1)χ2)πON + χ1πOFF

=
p2χ2 − p1p2χ1χ2(1− χ1)

1 + p1p2χ1χ2
.

(20)
Following a similar analysis to what has been presented

above, the boundary of stability region of system C can be
derived. The stability region boundary depends on the values
of δ1 and δ2. If δ2 < 1 − δ1

2 , the boundary of the stability
region is given by

λ2 =











δ2 0 ≤ λ1 ≤
2δ1−δ2+

√
2δ2−4δ1δ2+δ2

2
+1−1

2 .

(δ1−λ1)(λ1−δ1+1)
λ1

2δ1−δ2+
√

2δ2−4δ1δ2+δ2
2
+1−1

2 ≤ λ1 ≤ δ1

,

(21)

and if δ2 ≥ 1 − δ1
2 , the boundary of the stability region is

given by

λ2 =







δ2 0 ≤ λ1 ≤ 1− δ2
1− λ1 1− δ2 ≤ λ1 ≤ δ1

2
(δ1−λ1)(λ1−δ1+1)

λ1

δ1
2 ≤ λ1 ≤ δ1

(22)

In Fig. 8 and Fig. 9, the stability regions derived from the
dominant system used for system C are plotted in green for
δ1 = δ2 = 0.8 where δ2 ≥ 1 − δ1

2 and δ1 = δ2 = 0.6
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Fig. 9: The stability regions for Random Access with
Feedback, and Random Access with Feedback and Energy

harvesting in both batteries for δ1 = δ2 = 0.6.

where δ2 < 1 − δ1
2 , respectively. p1 and p2 range from 0

to 1 with a step of 0.01 in both figures. From the figures,
we can conclude that due to the energy constraint, there is
a loss in the stability region recognized by the white space
between the boundaries of both systems. Note that if one queue
only gains access to channel, its throughput cannot exceed its
energy harvesting rate. This explains why the stability region
of the system with energy constraint cuts the λ1 and λ2 axes
at δ1 and δ2, respectively.

V. CONCLUSIONS
This paper studied the stability of queues in a random access

network where the nodes have rechargeable finite energy
sources, and collision resolution capability through the ex-
ploitation of the feedback information. Collision resolution is
achieved by allowing only one node to retransmit after the col-
lision, while the other node refrains from retransmission. The
receiver then uses the collided packets and the retransmitted
packet to recover the two collided packets. The rechargeable
energy sources are modeled as queues, along with the data
queues at each nodes they form an interacting of queues. The
stability region of this system is characterized through the use
of the dominant system analysis approach. The stability region
obtained is compared with that of TDMA system and a random
access network without energy constrained, and the reduction
in the stability region due to the finite energy is determined.

APPENDIX A
PROOF OF LEMMA 3.2

In this Appendix, we provide a proof for Lemma 4.1. We
start by calculating the steady state distribution for the Markov
chain shown in Fig. 2.
First, it is clear that ε0 = 0 since the queue can never be in

a retransmission state while being empty. Writing the balance
equation around 1R, we have

ε1 = λ1p1p2π0 + (1− λ1) p1p2π1. (23)

Then around 0F , we have

(λ1p1p2+λ1(1−p1))π0 = (1− λ1) ε1+(1− λ1) p1(1−p2)π1.
(24)



Substituting for ε1 from (23) into (24), and after some manip-
ulations, we can get

π1 =
λ1 (1− p1 + λ1p1p2)

p1 (1− λ1) (1− λ1p2)
π0. (25)

Substituting from (25) into (23), we get ε1 = λ1p2

1−λ1p2
π0.

Writing the balance equation around 1F , we have
(1− λ1p1 (1− p2)− (1− λ1) (1− p1))π1 =

λ1π0 + λ1ε1 + (1− λ1) ε2 + (1− λ1) p1 (1− p2) π2.
(26)

Around 2R, we have ε2 = λ1p1p2π1 + (1− λ1) p1p2π2.

ε2 = λ1p1p2π1 + (1− λ1) p1p2π2. (27)

To get the relation between π1 and π2, we can substitute for
the values of ε1, π0 and ε2 from equations (23), (24) and (27),
respectively in equation (26); after some tedious manipulation,
we get

π2 =
λ1 (1− p1 + λ1p1p2)

p1 (1− λ1) (1− λ1p2)
π1. (28)

Substituting from (28) into (27), we get ε2 = λ1p2

1−λ1p2
π1. Note

that the Markov chain is repeating from stage 2 till the end.
For k ≥ 2, we have the following relations.

πk =
λ1 (1− p1 + λ1p1p2)

p1 (1− λ1) (1− λ1p2)
πk−1. (29)

εk =
λ1p2

1− λ1p2
πk−1. (30)

The last relation can be used to prove the following relation
between εk and εk−1.

εk =
λ1 (1− p1 + λ1p1p2)

p1 (1− λ1) (1− λ1p2)
εk−1. (31)

The steady state distribution can now be written as follows.
• ε0 = 0, ε1 = λ1p2

1−λ1p2
π0, and εk = ρk−1ε1, k ≥ 2.

• πk = ρkπ0, k ≥ 1 and ρ = λ1(1−p1+λ1p1p2)
p1(1−λ1)(1−λ1p2)

.
This steady state distribution can be easily checked to satisfy
the balance equation at any general state (details are omitted
since it is a rather straightforward, yet very tedious, proce-
dure).
To get the value of the steady state probabilities, we apply

the normalization condition
∑

∞

k=0(πk + εk) = 1, yielding

π0 +
∞
∑

k=1

(πk + εk) = π0

(

1 +
λ1p2

1− λ1p2

) ∞
∑

k=0

ρk = 1, (32)

where ρ = λ1(1−p1+λ1p1p2)
p1(1−λ1)(1−λ1p2)

as defined above.
Note that for the steady state distribution to exist, i.e. to have

π0 to be non zero, then we must have ρ < 1, which is the
stability condition for Q1 in this dominant system. Therefore,
the stability condition can be stated as

ρ < 1 → λ1 <
p1

1 + p1p2
. (33)

From the normalization condition in (32), we can get the
value of π0 as π0 = p1−λ1(1+p1p2)

p1(1−λ1)
.

In Dominant System 1, Q2 will be served in both states
denoted by the subscript F and R in Fig. 2. Hence, the service
rate, µ2, for Q2 in Dominant System 1 is given by

µ2 = p2(1− λ1p1)πo +
∞
∑

k=1

p2(1− p1)πk +
∞
∑

k=1

εk. (34)

where in the 0F state, Q2 is served if Q2 decides to access
the channel when Q1 decides not to access the channel if it
receives a packet at the start of the time slot or there is no
arrival for the packet; for the other first transmission states, Q2

will be served if it decides to access the medium, which occurs
with probability p2, and Q1 decides not to access the medium,
which occurs with probability (1 − p1); for retransmission
state, Q2 will be served with probability one. After some
manipulation, we can write the expression for µ2 as

µ2 =
p2(1− λ1p2 + λ2

1p2 − λ1)

(1− λ1)
. (35)

For the stability of Q2, we must have

λ2 < µ2 =
p2(1− λ1p2 + λ2

1p2 − λ1)

(1− λ1)
. (36)
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