
; revised .

Self-Optimized Agent for Load
Balancing and Energy Efficiency: A
Reinforcement Learning Framework

with Hybrid Action Space
Bishoy Salama1, Aamen Elgharably2, Mariam Aboelwafa3, Ghada Alsuhli4,

Karim Banawan2 and Karim G. Seddik1

1The American University in Cairo
2Alexandria University
3NewGiza University

4Khalifa University

Corresponding author: Mariam Aboelwafa (email: mariam.nabil@ngu.edu.eg).

ABSTRACT We consider the problem of jointly enhancing the network throughput, minimizing energy
consumption, and improving the network coverage of mobile networks. The problem is cast as a rein-
forcement learning (RL) problem. The reward function accounts for the joint optimization of throughput,
energy consumption, and coverage (through the number of uncovered users); our RL framework allows
the network operator to assign weights to each of these cost functions based on the operator’s preferences.
Moreover, the state is defined by key performance indicators (KPIs) that are readily available on the
network operator side. Finally, the action space for the RL agent comprises a hybrid action space, where
we have two continuous action elements, namely, cell individual offsets (CIOs) and transmission powers,
and one discrete action element, which is switching MIMO ON and OFF. To that end, we propose a new
layered RL agent structure to account for the agent hybrid space. We test our proposed RL agent over
two scenarios: a simple (proof of concept) scenario and a realistic network scenario. Our results show
significant performance gains of the proposed RL agent compared to baseline approaches, such as systems
without optimization or RL agents that optimize only one or two parameters.”

INDEX TERMS Reinforcement Learning, Cellular Networks, Self-Optimized Networks, Mobility Load
Balancing, Energy Efficiency, Hybrid Action Space

I. INTRODUCTION

THE exponential growth of cellular data traffic in the
last decade urges network providers to enact significant

network optimization. To put that into perspective, mobile
network data traffic grew 39% between the second quarter
of 2021 and the second quarter of 2022 and reached 100
exabytes/month [1]. As a result, continuous configuration
and management are necessary to sustain a balanced per-
formance while facing such continued growth and endless
changes. Nevertheless, network management needs to be
adaptive and self-optimized due to the dynamic nature of
the cellular network, heterogeneity of traffic loads, and the
continuous adjustments of the operators’ needs [2]. For
instance, the number of users drastically fluctuates over time
according to human activities. The coverage requirement
varies as well due to fast urban changes. Moreover, energy
conservation has become a universal need in the past decade

[3], [4]. All this motivates the need for self-organizing
networks (SONs) [5], which support autonomous planning,
configuration, optimization, and healing.

Cellular network optimization is a challenging task in
general. The problem becomes more burdensome if we re-
quire the network to self-optimize its operational parameters.
This gives rise to the concept of AI-native networks. AI-
native networks embrace artificial intelligence (AI) as an
innate feature network functionality. In AI-native networks,
the AI techniques are embedded in the design, deployment,
operation, and maintenance of the network. AI solutions
are appealing in situations where classical solutions are
extremely complex (if they even exist), and the data is
abundant to enable inference and learning. Specifically, an
AI-native network utilizes system behavioral data (e.g., key
performance indicators) to train an AI-based solution (e.g.,
neural networks). The AI solution aims to replace familiar

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME , 1

KSEDDIK

:

rule-based mechanisms with data-driven policies. AI-native
networks need to detect and adapt to environmental varia-
tions. The learning modules include such new experiences
to improve the learned policies over time. The AI-native
concept is considered one of the disruptive technologies
related to 6G cellular networks [6]–[8]. Recently, AI-enabled
solutions have become more relevant with the introduc-
tion of open radio access networks (O-RAN). To break
vendors’ monopoly over the telecommunication market, O-
RAN implements cellular networks as virtualized RANs.
RANs, in this case, comprise disaggregated components,
which are connected via open interfaces, and optimized
by radio intelligent controllers (RIC). RICs are enabled
by AI techniques, implemented in software, and can be
developed as third-party applications (a.k.a., xApps, and
rApps). Consequently, cellular network optimization can be
implemented as an xApp/rApp, which is AI-native in nature
to avoid the complexity of the problem [9]–[11].

To motivate the network self-optimization problem further
from a technical perspective, consider the following concrete
scenarios; first, consider the scenario of optimizing a cellular
network with heterogeneous traffic loads to maximize the
total throughput of the network. In this case, a controller of
the base stations (a.k.a., eNBs in LTE) may opt to offload
the traffic from heavily congested cells to less congested
cells using Cell Individual Offsets (CIOs) as in [12]–[14].
The CIO is a power offset that controls the handover power
level threshold without affecting the QoE of the mid-cell
users. Using CIO, cell-edge users may be forced to leave
congested cells such that they can enjoy a higher number
of physical resource blocks (PRBs), which in turn may
lead to higher total throughput. Nevertheless, in this case,
the received power at cell-edge users is inferior to the
received power if CIO is disabled. This reduces the Quality
of Experience (QoE) of these users and prevents employing
high modulation and coding schemes (MCS). Note that the
CIO fakes the cell edges to enforce a handover decision
that may not be optimal in terms of channel quality. This
motivates the second scenario, where the controller has the
same objective, but instead of using the CIO control, it
controls the transmit power of the eNB as in [15]–[17].
Although this approach controls the actual boundaries of the
cells in contrast to the CIO, it creates a new set of problems.
More specifically, increasing the transmit power of one eNB
may result in decreasing the signal-to-noise-and-interference
(SINR) ratio of adjacent cells, which in turn results in lower
QoE. Moreover, decreasing the transmit power may lead to
having coverage holes. Consequently, tension arises between
QoE and coverage if transmit power is controlled. Thus, joint
optimization of the CIO and transmission power has proved
its superiority in enhancing the performance of the network
and the QoE of the users in [18], [19], compared to separate
optimization of each parameter. In the final scenario, we
consider the case where the controller aims to minimize the
energy consumption of the cellular network. Disabling the

MIMO features is an attractive solution, as it is known that
the MIMO module is one of the most energy-hungry modules
of the eNB. Switching the MIMO OFF consistently, however,
leads to a significant reduction in the QoE. Consequently, a
tradeoff between QoE and energy arises.

From the aforementioned scenarios, we conclude that
optimizing cellular networks requires a joint and intricate
choice of network parameters to satisfy a set of requirements
that may be in tension. Due to the huge dimensionality of the
aforementioned problem, it is challenging to devise a good
analytical model to capture the system’s dynamics and/or
tackle the problem using classical optimization approaches.
This motivates the adoption of Machine Learning (ML)
techniques in this work.

We employ Reinforcement Learning (RL) in this work to
implement our self-optimizing controller. RL is suitable for
our work as we do not rely on labeled historical data as
in supervised learning, but rather, we aim at maximizing a
long-term average goal (e.g., throughput, coverage, or energy
optimization). RL is beneficial in situations where the end
goal is known, but the intermediate optimal steps are not
learned in advance. However, RL depends mainly on trial
and error, which is challenging to apply in a live cellular
network since it directly impacts the QoE of the end-user.
To tackle this issue, we use a simulated cellular network
environment as will be explained later.

In this paper, we present a comprehensive framework for
self-optimization of cellular networks using deep RL tech-
niques1. The simulations primarily focus on LTE (4G) tech-
nology but remain relevant to 5G networks due to structural
similarities. Technically, both LTE and 5G utilize Orthogonal
Frequency Division Multiple Access (OFDMA) for downlink
transmission. Dynamic resource allocation techniques, like
Resource Block (RB) allocation and scheduling algorithms,
optimize resource utilization and meet Quality of Service
(QoS) targets based on user needs and network conditions.
The Key Performance Indicators (KPIs) used in the work,
such as Resource Block Utilization (RBU), Total Downlink
Throughput of each cell, Number of active users per cell, and
Modulation and Coding Scheme (MCS) Matrix remain rele-
vant in 5G networks. Furthermore, 6G is anticipated to adopt
Orthogonal Frequency Division Multiplexing (OFDM); this
will, in turn, render our model as a potential contender
for 6G load balancing with minimal adjustments required,
subject to the specifics of the standard. Additionally, the
vision for 6G entails it being an AI-native network standard,
streamlining all manual tasks related to both the radio and
core networks. This positions 6G as an ideal candidate for
our model, facilitating the transition towards self-optimizing
networks.

Our scheme exhibits a self-optimizing nature since it is
capable of reaching a stable state of the cellular network

1Although our experiments are performed over an LTE network, our
framework extends seamlessly to other cellular systems as long as the
needed KPIs are reported to the central agent.

2 VOLUME ,

after any sudden variation in the surrounding environment.
More specifically, we design a centralized deep RL agent that
aims at 1) maximizing the sum throughput of the cellular
network, 2) balancing the traffic load across the cells, 3)
minimizing the number of uncovered users, 4) satisfying the
QoE of individual users, and 5) minimizing the energy con-
sumption of the eNBs. To that end, we propose the following
controls to satisfy the aforementioned challenging (some-
times even conflicting) requirements: 1) CIOs, which affect
load balancing and user blocking, 2) eNBs’ power levels,
which affect the handover decisions, inter-cell interference,
in addition to the QoE/throughput of users, 3) switching the
MIMO features of the eNB ON or OFF. By switching the
MIMO feature ON, the users enjoy better QoE by either
having a low probability of error via transmit diversity, or
higher throughput via spatial multiplexing techniques. On the
other hand, switching OFF the MIMO features significantly
decreases the energy consumption of the eNB. This implies
that selected actions contain actions that are picked from a
continuous space, namely, CIOs and power levels, in addition
to actions from a discrete space, which is enabling/disabling
the MIMO features.

To that end, we design a novel RL agent that jointly
optimizes the mentioned hybrid actions. To deal with the
hybrid nature of the action space, we propose a layered agent
structure. The decision-making process depends on a set of
key performance indicators (KPIs) similar to [20], which
are periodically reported to the network without incurring
extra signaling costs. Moreover, we propose a versatile
reward function (end-goal function) that incorporates the
requirements under consideration and can be tweaked to the
liking of the network operator. 2

We tested our proposed scheme in a simulated, yet accu-
rate settings. In this work, we simulate the cellular network
using network simulator 3 (NS3). We extend the simulated
cellular network in [19] to handle MIMO switching and
scheduling. Our simulator takes into account actual eNB
placements, and actual transmission parameters from a major
cellular operator, along with actual mobility patterns using
the simulation of urban mobility (SUMO) and the open
street map (OSM). We provide extensive numerical results
to assess the performance of our agent. Notably, our agent
shows sum throughput enhancement of 18.5%, with switched
OFF MIMO features for 34% of time, while maintaining a
65% covered users in all cells, in the actual scenario over
the baseline system (fixed transmission power, zero CIO,
and enabled MIMO). This implies that the operator can
simultaneously reduce energy consumption while enhancing
the QoE with reasonable coverage.

The main contribution of this paper can be summarized
as:

2This work is extension of our published conference paper [21].

• Providing a holistic self-optimizing framework for cel-
lular networks, that can optimize throughput, coverage,
energy, etc.

• Proposing a novel layered RL agent that deals with
a mixture of discrete and continuous (hybrid) action
spaces.

• Proposing a versatile penalized throughput reward func-
tion that takes into account the sum throughput, cover-
age, and energy consumption.

• Implementing an accurate NS3 simulator of a real cellu-
lar network in an urban Fifth Settlement neighborhood
in Egypt along with realistic mobility patterns.

II. Literature Review
As mentioned in the previous section, the main objective
of this work is to enable the cellular network to be a self-
optimizing network. The network needs to autonomously
alter its parameters to be more immune to urban changes
or varying traffic demands. In this work, we train the
cellular network to concurrently reach a maximized sum
throughput, a balanced load among cells, a minimum number
of uncovered users, and optimized energy consumption. As
an extension to our work in [21], we simultaneously address
three network management controls. These are CIOs, trans-
mission Powers, and enabling the MIMO feature. Hence, the
most closely related works to this paper are those concerned
with energy saving and load balancing problems.

The energy-saving problem has been investigated in the
literature. For instance, in [22], the authors discuss how cel-
lular base stations can be dynamically operated by switching
OFF redundant base stations during periods of low traffic.
This proves to provide significant energy savings in cellular
networks. Also, in [23], the authors design an efficient
online scheduling algorithm to minimize energy consump-
tion while optimizing the end-user experience. Moreover,
in [24], the energy optimization problem in mobile networks
is considered by using a neural network-based algorithm
to enable the MIMO feature only when necessary to reach
a satisfactory user QoE. The authors presented a different
viewpoint in [25], where they use RL for power control in
cellular networks. They propose a novel training strategy to
accelerate learning to avoid performance degradation during
state space exploration.

Load-balancing techniques are ubiquitous in the litera-
ture as well. In [12] and [13], the authors design an RL
framework for optimizing cell parameters to balance traffic
load across the cells. Their target is controlling the CIO
of neighboring cells to force cell-edge users to hand over
from congested cells into lighter-load cells. In [19], and [18],
the authors propose an RL agent that controls both eNB
transmitted power and CIOs to achieve traffic load balancing.
The goal of the RL controller in these works is to maximize
the DL sum throughput while minimizing the number of
uncovered users.

VOLUME , 3

:

In this work, we adopt RL for realizing the cellular net-
work controller. RL has been used to train cellular networks
in many previous works. [26] presents a survey of the
applications of deep RL in cellular networks.

The authors in [27] present an RL-based scheduler that
aims to dynamically adapt to traffic variation by optimally
scheduling Internet of Things (IoT) traffic. [28] considers a
deep RL approach for coordinating the inter-cell interference.
More specifically, the work [28] controls power in cellular
networks aiming at maximizing the sum rate of the network.
A downlink scheduling approach based on RL is presented
in [29] to autonomously schedule the active traffic flows.
RL can also be used to learn the optimal caching policy as
in [30]. In [30], the authors formulate the content caching
problem as a Markov decision process (MDP). They define
the system reward as the delay reduction after performing a
caching action. In [12], [13], [18], [19], [21], RL was adopted
aiming to reach load balancing in the network with an end
goal of maximizing the sum throughput.

Furthermore, as mentioned earlier, the action space in this
work is a mix of continuous and discrete sets. Handling
a hybrid action space exists in the literature as well. In
[31], the authors focus on the hybrid action space of video
games. They adopt the Soft-Actor-Critic (SAC) algorithm
in a parameterized manner. They duplicate the continuous
components that depend on other discrete components (one
for each discrete component) as long as the model dimension
remains reasonable. This does not apply to a cellular network
with a large number of cells, as it suffers from the curse
of dimensionality. Another example is in [32], where hybrid
control in Robotics is the main concern. The authors propose
a new scheme on top of the Maximum a posteriori Policy Op-
timization (MPO) algorithm. Although this scheme is consid-
ered applicable to relatively large problems, we preferred to
adopt a layered RL agent that utilizes DDQN and TD3. This
layered structure constitutes a natural generalization for our
previous DDQN and TD3 agents in [13], [18], [19], [21]. The
authors in [33] deploy a multi-agent algorithm with a hybrid
action space. In this work, we focus on cellular networks
with a central agent. Hence, this multi-agent approach is not
suitable in our setting. Moreover, in [34], a mixed deep RL
algorithm is presented to handle hybrid discrete-continuous
action spaces in smart homes’ energy management.

Another related work is presented in [35], in which
the authors discuss the deployment of heterogeneous wire-
less networks within the 5G framework, focusing on Non-
Orthogonal Multiple Access (NOMA) technology to manage
spectral efficiency and system complexity. The paper ad-
dresses user association and uplink power allocation issues in
heterogeneous 5G networks using NOMA, utilizing a Con-
tract Theory (CT) approach to handle incomplete Channel
State Information (CSI) and Reinforcement Learning (RL)
for iterative user-to-base station (BS) association. While [35]
concentrates on NOMA-based solutions and CT/RL tech-
niques for user association and power allocation, this work

focuses on optimizing mobile networks using model-free
RL methods to improve throughput, energy efficiency, and
coverage, without addressing NOMA but adopting OFDMA
instead.

Additionally, the work presented in [36] is a related
approach. The research in [36] primarily centers on RL-
based performance tuning and fault management. It presents
a framework utilizing RL to automatically adjust cellular net-
work parameters, tackling issues such as fault management
and enhancing downlink performance. The study highlights
RL-based indoor voice-over-LTE power control algorithms
and outdoor fault management. In contrast, our work adopts
a broader approach involving self-optimizing networks. Our
paper explores the concept of AI-native networks, where
AI techniques are integrated into network functionalities to
facilitate autonomous planning, configuration, and optimiza-
tion.

The novelty of this work lies in two main points. First,
we aim to jointly control three different parameters/features
to reach a stable state in the network. Those three features,
as mentioned above, are the CIOs, transmission power, and
MIMO status. As far as it came to our knowledge, no other
works in literature address the same problem. Most work in
literature aims to control one or two features at most. We,
on the other hand, aim to have more holistic control over
the network.

The second novel point is how we deal with the hybrid
nature of the action space. The controls over CIOs and
transmission power belong to a continuous action space.
However, enabling/disabling MIMO belongs to a discrete
action space. In this work, we handle the hybrid action space
in a hierarchical approach. We propose a novel RL-based
scheme that allows the agent to make its decision in two
successive stages in a simple, yet efficient approach (details
are to be presented later in Section IV).

To prove the merit of the proposed hybrid approach, we
also considered having one agent with a continuous action
space instead of the hybrid agent. The action includes CIOs,
transmission power, and a float in the interval [−1, 1]. The
float value is then compared to a threshold of 0 to decide
whether or not to turn the MIMO feature ON or OFF. The
comparison between both agents is shown in Section V.

It is worth mentioning that, as mentioned earlier, this work
is an extension of our previously published conference paper
[21]. In comparing the conference version and this version of
the paper, several key distinctions emerge. Firstly, while the
conference paper explores two simple scenarios, the current
submission ventures into more realistic settings and diverse
mobility patterns, incorporating actual site locations from
an Egyptian operator. Secondly, the performance evaluation
in the current submission surpasses the conference paper
by introducing a comparison to the continuous agent only
(TD3), revealing the superior performance of the proposed
hybrid agent. Furthermore, a notable difference lies in the
more extensive simulation results and analysis present in the

4 VOLUME ,

current submission, offering a richer and more comprehen-
sive exploration.

III. Technical Background: Reinforcement Learning
RL is a process in which an agent learns to achieve a
certain goal in the long run (maximize a certain specified
reward) [26]. To that end, an RL agent makes decisions
(applies actions), observes the impact of its decisions on
the surrounding environment, and adjusts its strategy based
on its observation. RL is an efficient technique for solving
problems that can be modeled as an MDP [37, Chapter 3].
This MDP describes an interaction between the environment,
which is the cellular network in our problem, and the agent
we need to design. In MDPs, at each time step t, the agent
receives some representation of the environment (a.k.a, a
state, s(t), that belongs to a state space, S). Depending
on this state, the agent selects an action, a(t) from a
predetermined set of actions, A). Next, the agent receives
the consequence of its action (feedback signal), which is a
numerical reward r(t + 1) and a new state s(t + 1) [37,
Chapter 3].

The objective of the decision-maker (a.k.a., the agent)
is to reach the sequence of actions (a.k.a., the policy) that
eventually maximizes the expected reward function [18], [37,
Chapter 3]. This objective can be characterized as:

max
π

lim
L→∞

L∑
t=0

E[λtr(t)], (1)

where r(t) is the reward function, λ is the discount factor that
determines the significance of the reward’s future expected
values, and π is the policy to be learned.

The nature of the action space can be discrete, continuous,
or hybrid. In a discrete action space, the agent selects the
actions a finite set of possible actions. This is in contrast
to the continuous-action-space case, where the agent picks
its action from a bounded interval. A hybrid action space
implies that the agent samples some actions from a finite
set, while others are taken from bounded intervals.

To solve the aforementioned MDP using RL, there are
several variants of RL techniques [37]. The basic Q-learning
technique works with a discrete set of actions [37, Chap-
ter 6]. The Deep Q-Network (DQN) technique employs a
deep neural network to approximate the output of the Q-
function (see the definition of Q-function in Section A).
The Double-DQN (DDQN) technique is an extension of
DQN. In DDQN, the agent implements two different neural
networks for action selection and action evaluation [38].
More techniques exist in literature as well [39]. For a
continuous set of actions, various RL techniques can be
used. One way is to use SAC methods, whose details can
be found in [40]. Another family of techniques is Policy
Gradient methods (and their extensions like TD3), which can
be understood from [41]. For hybrid action spaces, there are
some parameterized approaches in the literature to handle

this mixed type of action spaces [31]–[33]. In this work, we
present a novel approach to handling hybrid action spaces.

We focus on two specific RL techniques, which are DDQN
and TD3. Next, we provide a brief description of each of
them.

A. Double Deep Q-Learning (DDQN)
Q-Learning is an effective algorithm for learning the
decision-making policy for MDP. To that end, the agent
learns the Q-function, which is the value of an action in
a particular state. The Q-function of policy π is defined by
[37, Chapter 3]

Qπ(s, a) = Eπ

[∞∑
k=0

λkr(t+ k)|s(t) = s, a(t) = a

]
. (2)

In the traditional Q-learning, the agent needs to build a Q-
table that contains Qπ(s, a) for all (s, a) pairs. The optimal
Q-function Qπ∗(s, a) is computed by solving the Bellman
optimality equation as in (3), where (s′, a′) is any possible
next state-action pair. The optimal policy π∗ in (4) is
obtained greedily with respect to Qπ∗(s, a). The Bellman
equation can be written as [37, Chapter 3]:

Qπ∗(s, a)=Es′

[
r(t)+λmax

a′
Qπ∗(s′, a′)|s(t)=s, a(t)=a

]
(3)

which leads to the optimal policy,

π∗(s) = argmax
a∈A

Qπ∗(s, a). (4)

Because of the curse of dimensionality problem associated
with constructing the Q-table, the Deep Q-network (DQN)
[42] has been developed. DQN relies on approximating the
Q-function Q(s, a;w) using a deep neural network with
weights w [43, Chapter 4], i.e., the output of DQN generates
the Q-values of all possible actions a ∈ A at state s. This
fact makes the DDQN works only for a limited number of
actions, i.e., a discrete action space.

At each time step t, the agent applies an action a(t) to the
environment and thus a sample (s(t), a(t), s(t+1), r(t+1))
is collected and used to update the Q-network. To explore
as much as possible of (s, a) pairs, the agent selects random
actions with probability ε(t) ∈ [0, 1], equation (8). The value
of ε(t) decays gradually during the learning process to allow
for more exploitation of the gained experience by the agent
[44]:

a(t) =

{
argmaxa′∈A Q(s(t), a′;wt) w.p. 1− ε(t)
random a ∈ A w.p. ε(t)

(5)

For the training of the Q-network, the agent periodically
updates the weights w such that the difference between the
target Q-value y(t) and the predicted Q-value is minimized,
i.e., the training procedure minimizes the loss function L(w)
[43, Chapter 4],

L(w) = E
[
(y(t)−Q(s(t), s(t);wt))

2
]
, (6)

VOLUME , 5

:

where the target Q-value is given by,

y(t) = r(t+ 1) + λmax
a′

Q(s(t+ 1), a′;wt). (7)

Despite its efficiency, DQN suffers from unstable learning
and unguaranteed convergence [45]. For this reason, in this
work, we employ a new variant of DQN. In this version,
we equip the DQN with an experience replay buffer and the
target network [44]. We stabilize the learning process using
an experience replay buffer DF with maximum size F . This
buffer is used to store the samples collected by the agent
during the learning process, i.e., [44]

DF = {(s(t), a(t), s(t+ 1), r(t+ 1)) for all t}. (8)

Instead of using the correlated samples collected by the
agent with the same collection order to update the weights
of the DQN, a mini-batch of size Bs is randomly picked
from DF and used altogether for the update process. This
random sampling breaks the correlation between the samples
and prevents the DQN from forgetting the rare samples [45].

To enhance the convergence of the DQN, another deep
neural, called the target network, is added to the agent. The
target network has weights ŵ and is added beside the base
network to obtain Double DQN (DDQN) [46]. DDQN aims
to reduce the overestimation of Q-values in the learning
process by separating the selection of the action from its
evaluation. Thus, the base network with weights w selects
the best action in the next state, while the target network
evaluates the action by estimating its Q-value. Thus, the
target Q-value of the DDQN is defined as follows [46]:

y(t) = r(t+ 1) + λ×
Q(s(t+ 1), argmax

a′
Q(s(t+ 1), a′;wt)︸ ︷︷ ︸
from base NN

; ŵt)

︸ ︷︷ ︸
from target NN

. (9)

The base network is updated in the same way as DQN.
Whilst the target network is a delayed version of the base
network, i.e., the target network is updated with period Tu

by copying the weights of the base network.

B. Twin Delayed Deep Deterministic Policy Gradient
(TD3)
To deal with continuous action spaces, we move away from
the value-based RL (e.g., Q-learning-based methods) toward
the policy gradient-based RL (e.g., actor-critic-based meth-
ods). The main difference between Q-learning and actor-
critic methods is the separation between policy selection and
policy evaluation. Specifically, in actor-critic methods, the
optimal policy is learned directly and separately without the
need to predict the Q-value of all state-action pairs in a single
model. This separation relaxes the requirement of tabulating
all possible action values and allows for considering con-
tinuous actions. Hence, the actor-critic methods have two
distinct models. The first is the actor function µ(s), which
is responsible for learning the best action for a state s. The

second is the critic function Q(s, a), which estimates the
Q-value of the (s, a) pair.

Without loss of generality, in this work, we employ TD3
algorithm [47], which has shown great success over the other
actor-critic methods in several recent optimization problems
[48]–[52]. TD3 is a variant of the deep deterministic policy
gradient (DDPG) [53] with improved performance. As in
the case of DDPG, TD3 shares several DDQN enhancement
techniques, such as experience replay and target network,
which we discussed in the previous section. However, instead
of using one critic model as in DDPG, TD3 trains two
independent critic functions (thus, “twin”). The agent uses
the smaller of the two Q-values to calculate the target and
update the critic functions. Since underestimation errors do
not propagate, this limits the overestimation problem known
in both Q-learning and actor-critic methods. In addition, the
policy and the target networks are updated less frequently
than the Q-function in TD3, every Tu iterations. This delayed
update results in more stable learning and less training time.
Moreover, TD3 uses a regularization strategy by adding
clipped noise to the target action. This regularization smooths
out the Q-value and mitigates the impact of Q-function errors
on the policy. Next, we describe our implementation of the
TD3 algorithm in more detail.

In our implementation, the TD3 uses six NNs; two NNs
as critics functions, Q(s, a;wc1

t) and Q(s, a;wc2
t); one NN

for the actor function µ(s;wa
t); three NNs represents the

critics and the actor targets with weight vectors ŵc1
t , ŵc2

t ,
ŵa

t , respectively, where wci
t , i = 1, 2 is the ith critic weight

vector, and wa
t is the weight vector of the actor. We randomly

initialize the weights of the base NNs whereas the weights of
the target networks are set to their respective base weights:
ŵci

t ← wci
t for i = 1, 2 and ŵa

t ← wa
t .

Initially, the experience buffer DF is empty. Hence, the
agent starts to explore the action space A by interacting
with the environment and applying actions extracted from
the output of the actor added to uncorrelated Gaussian noise
N (0, σ2). For a time step t = 0, 1, · · · , T , where T is the
total number of steps per episode, if the environment is at
state s(t), the selected action a(t) by the agent is [47]

a(t) = clip(µ(s(t);wa
t) + e, θL, θU) (10)

where e is a noise vector, whose ith component e(i) ∼
N (0, σ2

n); clip(x, l, u) = l if x < l, clip(x, l, u) = u if
x > u, and clip(x, l, u) = x if l ≤ x ≤ u. The clip function
aims to keep the selected actions in the action space range
(θL, θU), where θL, θU are the lower and upper bounds of the
action space interval, respectively. After applying the action
a(t), the agent receives feedback from the environment that
includes the next state s(t + 1) and the reward function
r(t + 1). Then, a sample (s(t), a(t), s(t + 1), r(t + 1)) is
stored in the experience buffer DF .

Once the buffer contains more than Bs samples, we
randomly select a batch of size Bs from DF for each
iteration. Let (si, ai, ri+1, si+1) be the ith sample of the
batch, where i = 1, 2, · · · , Bs, the target action is computed

6 VOLUME ,

based on the output of the target actor-network [47],

ai+1 = µ(si+1; ŵ
a
t) (11)

Then, a clipped noise ẽ = clip(N (0, σ̃2
n),−c, c) is added to

compute the smoothed target action [47] ,

ãi+1 = clip(ai+1 + ẽ, θL, θU), i = 1, · · · , Bs (12)

where c > 0 is the maximum absolute value of the clipped
noise. Afterward, a single target of both critics’ Q-functions
is calculated using the smaller Q-value [47] , i.e.,

yi = ri+1 + λ min
j=1,2

Q(si+1, ãi+1; ŵ
cj
t) (13)

We update the weights of the two critics by minimizing
the mean square error along the mini-batch [47] , i.e., for
j = 1, 2,

w
cj
t+1 = argmin

w
cj
t

1

Bs

Bs∑
i=1

(yi −Q(si, ai;w
cj
t))2 (14)

On the other hand, we update the actor function less
frequently every Tu iterations. This function is updated such
that the expected Q-value function is maximized. Accord-
ingly, we calculate the gradient ascent of the expected Q-
value with respect to wa

t as [47]

J(wa
t) = E[Q(s, a;wc

t)|s = si, a = µ(si;w
a
t)] (15)

Using the chain rule, we can compute the gradient
∇wa

t
J(wa

t)

≈ 1

Bs

Bs∑
i=1

∇aQ(s, a;wc
t)|s=si,a=µ(si;wa

t)
∇wa

t
µ(s;wa

t)|s=si

(16)

Regarding target networks update, the soft update is used
in TD3 to stabilize the learning. The three target NNs are
updated as a linear combination of old target weights and
newly learned weights [47],

ŵc
t+1 ← βwc

t+1 + (1− β)ŵc
t (17)

ŵa
t+1 ← βwa

t+1 + (1− β)ŵa
t (18)

where β ∈ [0, 1] is the soft update coefficient.

IV. Problem Description and Proposed Approach
In this section, we present a comprehensive description of
the problem at hand and the proposed algorithm. First, we
discuss the system model and the presented framework in
detail.

A. System Model
We consider an LTE cellular network that consists of N
eNBs and U User Equipment (UEs).

1) eNodeBs
Each eNB sends its transmission in the DownLink (DL)
with a power level Pn ∈ [Pmin, Pmax] dBm. At times t =
0, 1, 2, 3, · · · , each UE measures the Signal-to-Interference-
plus-Noise-Ratio (SINR) of near eNBs and attaches to the
cell that results in the highest SINR.

An eNB can be over-utilized or under-utilized. This is
determined according to the value of the eNB utilization ρn:

ρn =

∑Un

i=1 Ki,n

Bn/BPRB
, (19)

where Un is the number of UEs served by the nth eNB, Ki,n

is the number of Physical Resource Blocks (PRBs) that serve
the ith user in the nth eNB, Bn is the bandwidth of the nth
eNB and BPRB is the bandwidth of one PRB (=180 KHz
in LTE). Note that ρn is the ratio of the total number of
required PRBs of the nth eNB (to serve the attached users)
to the maximum number of PRBs it can offer. Therefore,
ρn < 1 means that the eNB is underutilized, while ρn > 1
means that the eNB is overutilized. Underutilization allows
the eNB to serve all its attached users with satisfactory rates,
which is not the case with over-utilization.

Every eNB can have the MIMO feature turned ON or
OFF (depending on the decision of the network manager).
Turning the MIMO feature ON has a considerable effect on
the rate received at the receiving end. Specifically, switching
the MIMO feature ON results either in a higher data rate
(e.g., using spatial multiplexing modes) or a lower BER
(e.g., using spatial diversity mode). Consequently, UEs can
enjoy a better QoE. Nevertheless, MIMO is one of the most
energy-consuming features in the eNB. When the MIMO
feature is turned ON, a scheduler decides whether to use the
multiple antennas to apply Spatial Multiplexing (SMux) or
Transmit Diversity (TxD) transmission modes. The decision
depends on the channel quality of the UE. Nodes with high
channel quality are assigned the SMux transmission mode
to achieve higher data rates. On the other hand, nodes with
lower channel quality (e.g., cell-edge nodes) are assigned the
TxD transmission mode to improve their received SINR and
combat the effect of channel fading.

2) UEs
Each UE is assumed to have a random motion. It regularly
searches for a better cell (according to the higher SINR) and
attaches to the better cell if found. Moreover, The channel
quality indicator (CQI) ϕu of the uth UE is reported to the
associated cell periodically. The CQI is a discrete measure
that represents the quality of the channel. According to the
standard, ϕu ∈ {0, 1, · · · , 15}. When ϕu = 0, the uth UE is
out of coverage. A higher CQI value corresponds to higher
channel quality [54], [55].

When a certain UE is attached to cell i, it might require
handover to another neighboring cell j if [54]:

RSRPj + θj−i > Hys + RSRPi + θi−j , (20)

VOLUME , 7

:

where RSRPi and RSRPj are the measured Reference Signal
Received Power from eNBs i and j, respectively. θi−j is
the CIO value of eNB i with respect to eNB j and θj−i

is the CIO value of eNB j with respect to eNB i. Hys is a
hysteresis value to minimize repeated handover requests that
might occur due to minor signal quality fluctuations.

It is worth noting that the aforementioned system model
can represent 5G network as well. Both systems have an
OFDM-based air interface. The definition of the RBU in
(19) is consistent with the 5G air interface. The A3 han-
dover procedure in (20) is readily available in the 5G NR
specifications [56].

B. Reinforcement Learning Framework
The mapping of our joint optimization problem to the RL
algorithm can be explained briefly as follows: The agent is
a central network manager that exerts action on eNBs to
control different parameters. The environment is the cellular
network under consideration, which we aim to deliver to a
self-optimized state. The state is selected to be a subset of
the network KPIs, which are readily available to the network
operator in practice. These KPIs are:

• Resource Block Utilization (RBU) (B(t)): The fraction
of used PRB blocks that serve the users of each cell.
It is an N -length vector. It is a representation of how
congested each cell is.

• Total DL throughput of each cell (Rn(t)): It repre-
sents the eNB performance. It can be expressed as
Rn(t) =

∑Un

un=1 Run(t), where Run(t) is the measured
throughput of user un in the nth eNB.

• Number of active users in each cell (C(t)): This
measures the number of users that are not idle in a
certain time step.

• Modulation and Coding Scheme (MCS) Matrix (M(t)):
It is a matrix that gives the fraction of users with a
certain MCS. The MCS matrix represents the quality
of the channels.

The state is the concatenation of the above vectors (after
reshaping M(t)):

s(t) = [B(t)T R(t)T C(t)T vec(M(t))T]. (21)

where vec(·) represents matrix vectorization process.
We note that we chose these KPIs as they are already

in use by current network operators for monitoring cel-
lular network performance. Furthermore, the chosen KPIs
accurately reflect the state of the network. To see this, we
argue that cell congestion implies whether the agent should
apply a load-balancing action or not. The agent monitors
the congestion event through RBU and the number of active
users. Additionally, any control action must not hurt the total
throughput of the network. That is why the agent monitors
the network’s throughput and deals with it as a part of the
state fed to the agent. Finally, the agent needs to monitor the
channel qualities to decide on actions that affect the QoE of

the users. For example, Transmit Diversity is more suitable
than Spatial Multiplexing in case of low channel quality.

The action contains the features that the agent has control
over. These features are:

• Relative CIO values between every two neighboring
cells. θij = −θji = θi−j − θj−i. This action belongs to
a continuous actions space [−θmax, θmax].

• Transmission Power of each eNB Pn. It belongs to
a continuous action space. The agent chooses a value
from the set [Pn0

−Pmax, Pn0
+Pmax] for some constant

value Pn0
.

• Turning MIMO feature ON/OFF for nth eNB mn. The
whole MIMO action vector is [m1 m2 · · · mN]T .
This action is selected from a discrete set of size 2N

binary vectors since each eNB has a decision of mn = 0
(MIMO OFF) or mn = 1 (MIMO ON).

The main target of the RL agent is to reach the policy
that maximizes the expected reward function, in the long
run, [18]. That is:

max
π

lim
L→∞

L∑
t=0

E[λtr(t)], (22)

where λ is the discount factor that determines the signif-
icance of the reward’s future expected values. The above
formulations allow for the flexibility of selecting an operator-
preferred reward function. In our paper, we focus on the
following reward function3:

r(t) =

N∑
n=1

R(t)− ηR̄(t)

U∑
u=1

1(ϕu = 0)− µ

N∑
n=1

mn, (23)

where η and µ are hyper-parameters, which are selected to
meet the operator’s requirements, and R̄(t) is the average
user throughput at time instant t. This reward function
consists of a linear combination of three terms. The first
term (

∑N
n=1 R(t)) is the total network throughput (to be

maximized). The second term (ηR̄(t)
∑U

u=1 1(ϕu = 0)) is
the sum throughput of the uncovered users4 scaled by a
hyper-parameter η. In this work, we define the uncovered
users as those with a throughput less than or equal to a
certain threshold. Since one of the objectives is to minimize
the uncovered users (a penalty); therefore it is subtracted,
and we scale this penalty by η to control how significant
it is to the agent. The last term (µ

∑N
n=1 mn) is also a

penalty. It is the number of eNBs that have the MIMO
feature turned ON. We scale the MIMO enabling penalty
by another hyper-parameter µ. We note that the choice of
the hyper-parameters is determined based on the operator’s

3It should be noted that our proposed framework can readily be extended
for any other reward function.

4In this work, we use the number of uncovered users as a proxy for
the effective coverage of the cell. Specifically, having ϕu = 0 implies that
the UE has not received any usable LTE signals and that the channel is
inoperable. This, in effect, restricts the coverage of the cell.

8 VOLUME ,

interests, which in turn are based on the strategic objectives
of the service provider (e.g., coverage/capacity tradeoff), the
channel conditions, and the network settings.

Thus, the agent’s objective is to reach the policy (sequence
of action) that maximizes the total network throughput, min-
imizes the number of out-of-coverage users, and minimizes
the consumed energy due to turning MIMO ON. Note that
choosing the reward function as the total throughput with no
penalties may not reflect the operator’s objective. Without
the uncovered users’ penalty, the agent may choose to keep
only the users with high rates. Thus, the agent may alter
CIOs or reduce power levels to force edge users to hand
over to a poorer-performance cell. The other penalty limits
the consumed energy due to turning MIMO ON. Without this
energy penalty, the agent may always opt to turn MIMO ON
with no regard to energy consumption.

C. Problem Formulation
In this section, we describe the problem formulation. In our
setting, the control agent aims to simultaneously maximize
the long-term average of the sum throughput,

∑N
i=1 Rn(t),

minimize the probability of the uncovered users, P(ϕu =
0) = E[1(ϕu = 0)], and minimize the energy consumption
of the network, which can be measured by the number of the
cells, where the MIMO feature is ON,

∑N
n=1 mn. To that

end, at time t, the central agent needs to jointly optimize the
CIOs, θ(t) = [θij(t) : i ̸= j, i, j = 1, 2, · · · , N], the transmit
power of the eNBs, P(t) = [Pn(t) : n = 1, 2, · · · , N],
and the MIMO feature, m(t) = [mn(t) : n = 1, 2, · · · , N]
subject to the (stochastic) dynamics of the cellular network.
This formulation can be written as the following optimization
framework in (24).

where s̃(t) denotes the full cellular network state at time
t, f(·|·) denotes the stochastic dynamics of the cellular
network, i.e., the conditional distribution of the next state
of the network given the old state and the actions taken at
time t, g1(·, ·), g2(·, ·) denote mapping functions from the
network state to the throughput of the cell, and the CQI
of the users, respectively. We note that, in our problem,
the stochastic dynamics f(·|·), and the mapping functions
g1(·, ·), g2(·, ·) are unknown to the agent in advance and
cannot be represented by specific model. The agent needs
to learn these functions from experience. Furthermore, our
agent does not have access to the full cellular state but a
partial state s(·) represented by a subset of network readily
available KPIs.

As depicted in the problem formulation, it becomes ev-
ident that the relationship between penalized throughput
and transmitted power, CIOs, and MIMO functionality is
characterized by an unknown function. When faced with
such instances of uncertainty in mathematical modeling, Ma-
chine Learning emerges as the optimal choice for decision-
making. Particularly, Reinforcement Learning stands out as
the solution for problems afflicted by data scarcity, mirroring
the challenges encountered in our case.

D. Algorithm
The main issue in formulating the proposed cellular network
optimization as an MDP is having a hybrid action space.
To solve this issue, we present a scheme that adopts two
existing RL algorithms in a layered fashion. The first one
is the Double Deep Q-Network (DDQN) [38], which is
used for discrete action spaces (MIMO ON/OFF in our
case). The second one is Twin Delayed Deep Deterministic
Policy Gradient (TD3) [41], which is used for continuous
action space (transmission power and CIOs in our case). The
presented scheme is simple, yet efficient. One of its main
advantages is that it requires no modification in the core of
the used techniques (DDQN and TD3), i.e., the proposed
scheme deals with DDQN and TD3 techniques as black
boxes.

The agent takes its decision in two stages.

• First Stage: The agent observes the state and takes
the action of MIMO ON/OFF based on the DDQN
technique [38]. The action is taken from the discrete
set {0, 1} (for each eNB). Note that the chosen action
is not applied to the environment until the end of the
second stage.

• Second Stage: We augment the first-stage action with
the observed state. The second stage decides the CIO
and the variation in power level actions based on the
TD3 technique. They are selected from the continu-
ous intervals [−θmax, θmax] and [−Pmax, Pmax] respec-
tively.

After the two stages, the augmented action is given by:

a(t) =[(θij : i ̸= j, i, j ∈ {1, · · · , N},
(Pn : n ∈ {1, 2, · · · , N}),
(mn : n ∈ {1, 2, · · · , N})] (25)

a(t) is then applied to the environment. As the agent
explores the whole action space, the agent learns the effect
of the different combinations of the first-stage action (MIMO
ON/OFF) and second-stage action (Relative CIOs and Power
Levels).

An overview of the proposed scheme can be seen in Fig. 1.
We describe the scheme in algorithmic steps in Algorithm 1 ,
where s(t) is the observed state at time t, aM (t) is the MIMO
enabling action vector, aC(t) is the CIO values action vector
and aP (t) is the transmitted powers action vector. Moreover,
we demonstrate DDQN and TD3 schemes in Fig. 2, and
Fig. 3.

It is worth mentioning that turning ON the MIMO feature
for a certain eNB does not mean that SMux can be applied
for all users attached to this eNB. There is a scheduler
applied for each eNB, which is responsible for deciding
which users to apply SMux and which to use TxD. This
decision depends on the channel quality of each user. NS3
has SISO as the default running scheme. NS3 leaves absolute
liberty to the user to turn MIMO modes (SMux or TxD)
ON or OFF (i.e., The scheduler does not have a role in

VOLUME , 9

:

max
θ(t),P(t),m(t)

lim
L→∞

E

[
L∑

t=1

λt

(
N∑

n=1

Rn(t)− ηR̄(t)

U∑
u=1

1(ϕu(t) = 0)− µ

N∑
n=1

mn(t)

)]
s.t. s̃(t+ 1) ∼ f (s̃(t+ 1)|s̃(t),θ(t),P(t),m(t))

Rn(t) = g1(s̃(t+ 1), s̃(t)), n = 1, 2, · · · , N
ϕu(t) = g2(s̃(t+ 1), s̃(t)), u = 1, 2, · · · , U
θij(t) ∈ [−θmax, θmax], i ̸= j, i, j = 1, 2, · · · , N
Pn(t) ∈ [Pn0

− Pmax, Pn0
+ Pmax], n = 1, 2, · · · , N

mn(t) ∈ {0, 1} (24)

FIGURE 1. An Overview of the Decision-Making Process.

FIGURE 2. DDQN-based Optimization [13] FIGURE 3. TD3-based Optimization [13]

10 VOLUME ,

Algorithm 1 Proposed RL framework
1: Determine Reward Function.
2: Reset all values.
3: repeat
4: procedure STAGE ONE

5: Observe State (s(t)).
6: Select MIMO feature decision (DDQN) (aM (t)).
7: Create a new augmented state (saug(t) = [s(t), aM (t)]).
8: end procedure
9: procedure STAGE TWO

10: Observe state (saug(t)).
11: Select relative CIO and power level actions (TD3)

([aC(t), aP (t)])

12: Apply augmented action to the network aaug =

[aC(t), aP (t), aM (t)].
13: end procedure
14: Calculate Reward.
15: Calculate the next state.
16: until Reward Function Converges

selecting the suitable MIMO mode). The main concern is that
turning SMux for users with low CQI will only make things
worse. TxD is more suitable here to enhance the channel of
less fortunate users. To solve this problem, we developed a
simple scheduler that applies SISO for all users when the
agent chooses mn = 0. On the other hand, when the agent
chooses mn = 1, the CQI of each attached user is tested.
The SMux is selected for users having ϕu ≥ 7, and TxD
is selected otherwise. The CQI threshold is determined such
that TxD is applied for users that use QPSK and SMux for
users with higher MCS.

V. Performance Evaluation
A. Network Simulator
The proposed approach relies on the fact that the central
agents can interact and make changes to the cellular network.
This is because our RL agents have no prior knowledge
of the optimal policy and need to learn this policy from
experience. Consequently, using historical records of cellular
operators is not applicable in our case. To that end, we
need to utilize a realistic simulator that can mimic the
existing cellular network. Our proposed simulator builds
on the NS3 network simulator. NS3 is a discrete-event
simulator that contains a dedicated module to simulate the
LTE system. This LTE module is a realistic and a highly-
accurate simulator that emulates the entire LTE system. More
specifically, using the LTE module, we can simulate the
complete protocol stack of the eNodeBs and the UEs. We
have modified several NS3 built-in protocols to (i) allow
the agent to control the relative CIOs for neighboring cells,
(ii) and to allow the designed scheduler mentioned in D
to select the appropriate MIMO mode of operation. The
connection between the NS3 simulator and the agent was
realized using the NS3gym interface. NS3gym framework

TABLE 1. Simulation Parameters

Parameter Value

System Bandwidth (Bn) 5 MHz

Basic eNB transmission power (Pn0) 30 dBm

eNB antenna height 30 m

eNB antenna pattern Omni

UE antenna height 1.5− 2m

Path loss model COST Hata

Penalty on uncovered users (η) ∈ [0, 2]

Penalty on applying MIMO (µ) ∈ [0, 5]

Blockage Threshold (ρ) 0.5 Mbps

Training steps (Steps) 50,000

Steps per episode (T) 250

Step time 0.2 seconds

Handover
Hysteresis = 3 dB

Time to Trigger = 40 ms

allows for seamless integration of OpenAI Gym and NS3 to
enable RL techniques for networking optimization. NS3gym
interface is responsible for delivering the agents’ actions to
the environment and relaying back the states and rewards
calculated by NS3 simulation to the gent. Next, we describe
the details of the environments simulated using NS3.

B. Simulation Setup:
In this work, we simulate two scenarios 5. The first one
is the simple scenario. We design this scenario to show the
gain that can be obtained by applying the proposed approach
to the LTE network. The second setup is the real scenario,
which a cellular operator should consider before adopting
any approach for practical network implementation.

We simulate the environment for both scenarios using the
aforementioned NS3 simulator (LENA module) [57]. We
implement the agent using Python. We realize the interface
between the agent and the environment using the NS3gym
interface [58]. This interface is responsible for applying
agent actions to the environment and feeding back the reward
and new environment state to the agent. After applying the
agent action, the environment is updated using the control
parameters sent by the agent action. The reward is calculated
using (23). We summarize our simulation parameters in
Table 1.

The used RL algorithms in this work (DDQN and TD3)
are simulated using the stable implementation of Open
AI Baselines [59]. The simulation parameters of these
algorithms are listed in Table 2.

1) Simple Scenario
In this scenario, we consider a cellular network consisting of
3 eNBs, placed on the vertices of an equilateral triangle, and

5The Codes for this work are readily available at
the Github repository: https://github.com/AamenElgharably/
Self-Optimized-Agent-for-Load-Balancing-and-Energy-Efficiency

VOLUME , 11

https://github.com/AamenElgharably/Self-Optimized-Agent-for-Load-Balancing-and-Energy-Efficiency
https://github.com/AamenElgharably/Self-Optimized-Agent-for-Load-Balancing-and-Energy-Efficiency

:

TABLE 2. Simulation parameters of different RL agents

DDQN Parameter Value

Memory size 20000

Discount factor (λ) 0.95

Exploration rate (ϵ) 1.0

Exploration rate multiplier 0.9995

Minimum ϵ (Final value) 0.01

Learning Rate 0.001

Batch Size 32

Hidden Layers (Nh, nl, Activation) (2,(24,24),ReLU)

Output Layer Activation Linear

Optimizer Adam

Loss Huber loss

TD3 Parameter Value

Batch size (Bm) 128

Soft update coefficient (γ) 0.005

Policy delay (Tu) 2

Exploration noise Normal (σ = 0.1)

Hidden Layers (Nh, nl, Activation) (2,(64,64),ReLU)

Discount factor (λ) 0.99

Number of steps per episode 250

42 UEs. Each cell has 10 users centralized around the eNB.
On the edges between every two nodes, there are 4 edge
users. We set the inter-eNB distance to be 500 meters. UEs
have random mobility patterns in boxes around their starting
points with a constant velocity vu. UEs are assumed to be
active all the time. UE traffic model is the Constant Bit Rate
(CBR) model at 1 Mbps. UE mobility model is ”Random
Walk” (speed = 3 m/s).

2) Real Scenario
In this setup, we select an area of size 900m×1800m from
the urban Fifth Settlement neighborhood in Egypt to perform
the simulation using a realistic placement of eNodeBs. The
resulting network represents a cluster of six eNBs, whose
locations are provided by the 4G network operator.

For more realistic users’ mobility in our environment, we
use Simulation of Urban Mobility (SUMO) [60], due to
its simplicity and efficiency in producing realistic mobility
patterns. In addition, SUMO can import accurately-emulated
environments from factual maps such as Open Street Map
(OSM). This imported environment considers the existing
road structure, number of lanes, traffic light rules, buildings,
· · · , etc. After extracting the map from OSM, we use
the SUMO simulator to introduce realistic mobility models
of the UEs. The mobile UEs in this scenario are either
vehicles or pedestrians. The pedestrians walk at a speed
range between 0-3 m/s. Whereas the vehicles’ mobility
characteristics, i.e., acceleration, deceleration, speed factor,
and speed deviation, are taken from [61] to emulate the
realistic behavior of the vehicles. We randomly distribute
those UEs on the available streets and pedestrian lanes at

FIGURE 4. Effect of MIMO Energy Penalty µ on Sum Throughput (Simple
Scenario)

FIGURE 5. Effect of MIMO Energy Penalty µ on Sum Throughput (Real
Scenario)

the beginning of the simulation. Afterward, each UE has
a random trip from a source to a destination street during
the simulation time. UEs are assumed to have a full buffer
traffic model, i.e., the users are always active. The unlimited
demand of the users allows reaching the congestion with a
lower number of UEs, which reduces the NS3 environment
simulation time, which is the bottleneck in our simulations.

C. Results
In this section, we present the simulation results of both
scenarios. In both setups, we test the effect of different
hyperparameters on the sum throughput of the network, the
percentage of uncovered users, and the amount of energy
consumed by the MIMO feature. In this work, we assess the

12 VOLUME ,

performance of our proposed approach (i.e., the hybrid RL
agent) against five benchmarks as follows6:

1) SISO baseline (SISO BL): In this benchmark, the agent
has no control over any network feature. I.e., the
MIMO feature is switched OFF, the CIO is set to zero
for all cells, and the power levels of all eNBs are set
to Pn0

= 30dBm.
2) MIMO baseline (MIMO BL): Similar to SISO BL,

CIOs are set to zeros, and power levels are set to
Pn0

= 30dBm. Different from SISO BL, the MIMO
feature is switched ON at all times.

3) RL with MIMO OFF: In this benchmark, we employ
an RL agent to optimize the CIOs and power levels
only as in [18]. We switch OFF the MIMO feature at
all times.

4) RL with MIMO ON: Similar to the previous benchmark
with switching the MIMO feature ON at all times.

5) RL with continuous action space (RL TD3): In this
approach, we utilize a TD3-based agent with a continu-
ous action space only. The state that the TD3 agent ob-
serves is the same as which the hybrid agent observes
in the first stage, i.e., s(t) in equation (21). The TD3
agent jointly optimizes relative CIOs, power levels,
and MIMO actions over continuous action space in
one layer of optimization (in contrast to the proposed
hybrid approach, which uses two layers). Specifically,
the MIMO action, in this case, is a float in the range
[−1, 1]. The MIMO action is then discretized into two
levels {0, 1} based on a threshold of 0. This dictates
whether to activate or deactivate the MIMO feature for
each eNB.

In Fig. 4, and Fig. 5, we plot the network sum throughput
(in Mbps) versus the number of episodes of the training
phase for the simple scenario and the real scenario, respec-
tively. We compare the performance of the hybrid RL agent,
RL agent that controls CIOs and power levels only with fixed
MIMO feature (RL with MIMO ON/OFF agents), and the
Baseline (BL) setting. By RL agent, we mean our proposed
hybrid approach in this paper. We evaluate the hybrid RL
agent for different values of the hyper-parameter µ, which
scales the MIMO energy penalty. In all figures, we observe
that the sum throughput increases during the training phase
until it converges. We notice that as µ increases, the agent’s
tendency to turn MIMO ON decreases (since it negatively
affects the reward function). Therefore, the sum throughput
for smaller µ values is higher. However, reducing µ implies

6Although there are other approaches to deal with hybrid action spaces,
they are incompatible with our problem. For example: Discretization of
the power/CIO would incur quantization errors and the action space would
grow exponentially as the number of cells increases. Representing the
discrete actions as one-hot vector encoding would face the same scalability
issues. Finally, dealing with each action category via independent agent is
suboptimal as the power/CIO decisions are linked to the MIMO feature
activity as shown in Fig. 6.

increasing the consumed energy due to turning the MIMO
feature ON.

Next, we focus on investigating the significance of the
layered agent design. To that end, we compare three different
settings: Hybrid RL agent, TD3 agent, and baseline (SISO
BL). By the TD3 agent, we refer to the RL with continuous
action space (RL TD3) agent, which takes all continuous
actions only and then discretizes the MIMO action by
comparing to a threshold of 0. It is described in Algorithm 2,
where aMc

(n, t) is the continuous MIMO action of the nth

eNB in the range [−1, 1] at time t, aMc
(t) is the continuous

MIMO action vector at time t, and aM (n, t) is the discrete
(binary) MIMO action of the nth eNB at time t.

In Fig. 6, we plot the network sum throughput (in Mbps)
versus the number of episodes of the training phase for
both the hybrid agent and the TD3-based agent in a real
scenario. Fig 6 shows that the performance of the TD3-
based agent (RL with continuous action space) is always
lower than the proposed hybrid framework. At µ = 0
throughput was about 7% lower than its hybrid counterpart.
With increasing the MIMO penalty, the gap in throughput
increases. Furthermore, when a penalty is applied to using
MIMO, It is clear that hybrid agent training is more stable
than the TD3 agent. This is evident from the erratic per-
formance dip at the initial training episodes for the TD3
agent. That is due to the fact that, in the hybrid approach,
the MIMO configuration is known before optimizing the CIO
and Power actions. This, in turn, implies that the second layer
of the hybrid scheme has the ability to take more informed
actions. This is in contrast to the RL TD3 agent, which
is agnostic to the actual MIMO decision while optimizing
the CIO and power levels. Moreover, when using a TD3-
based agent only, the penalty µ effect will be reflected in
training, which leads to more unstable learning. In addition,
the size of the action space for the TD3 agent is larger than
its counterpart of the second layer of our proposed hybrid
approach, which naturally leads to elongating the random
exploration behavior at the beginning of the training, which
may cause unexpected performance dips especially if the
DNN weights are randomly initialized.

Algorithm 2 TD3 Agent
1: Determine Reward Function.
2: Reset all values
3: repeat
4: Observe State (s(t))

5: Select relative CIO and power level action and MIMO
action([aC(t), aP (t)], aMc (t))

6: Discretize MIMO action
7: aM (n, t) = 1 if aMc (n, t) ≥ 0

8: aM (n, t) = 0 if aMc (n, t) < 0

9: Apply action to the network ([aC(t), aP (t)], aM (t))

10: Calculate Reward
11: Calculate the next state
12: until Reward Function Converges

VOLUME , 13

:

FIGURE 6. Effect on MIMO Energy Penalty µ on Sum Throughput Hybrid
agent vs TD3 agent

We also observe that for all values of µ, the sum
throughput is higher than the BL setting with MIMO OFF.
In addition, the RL agent controlling the MIMO feature
outperforms the RL agent with MIMO turned OFF by default
(SISO). It also approaches a close performance to the RL
agent that has MIMO turned ON by default (but with
less consumed energy, as we can see later). Furthermore,
we can see in Fig. 4 and Fig. 5 that turning ON MIMO
with no other control on any network feature (BL) gives
a higher sum throughput than turning MIMO OFF (with
and without control over other features). Interestingly, our
proposed scheme with small values of µ outperforms BL
with MIMO ON besides consuming less MIMO energy.

It is worth mentioning that at µ = 5, the sum throughput
curve increases at first and decreases afterward. This behav-
ior is because the first portion of the learning phase is mainly
for action space exploration. I.e., the agent applies random
actions to examine their effect on the environment. Turning
MIMO ON in this case (µ = 5) would potentially increase
the sum throughput at the cost of increasing the penalty,
which is scaled by 5. Thus, the combined reward decreases,
and eventually, the agent learns that turning MIMO OFF
is more beneficial (in this case) to maximizing the adopted
reward (penalized sum throughput). Since we plot only part
of the reward (sum throughput), the behavior shown in the
curve is logical.

TABLE 3. Effect of MIMO Energy Penalty µ on Ratio of Time MIMO is Turned

ON

µ Simple Scenario Real Scenario

0 97% 70%

0.5 73% 66%

2 32% 43%

5 3% 1%

Table. 3 illustrates the percentage of time the MIMO is
turned ON for different values of µ after convergence. Please
note that these percentages are considered a measure of the
percentage of consumed energy compared to turning MIMO

FIGURE 7. Effect of Uncovered Users Penalty (η) on Percentage of
Covered Users (Simple Scenario)

FIGURE 8. Effect of Uncovered Users Penalty (η) on Sum Throughput
(Simple Scenario)

ON as a default setting. The presented values of µ include
two extreme cases (µ = 0) and (µ = 5). When µ = 0, the
agent has no energy penalty. In this case, the sum throughput
is close to the MIMO ON curve. The MIMO feature is turned
ON 97% of time for the simple scenario and 70% for the real
scenario. When µ = 5, the sum throughput approaches the
SISO curve. The MIMO feature is turned ON 3% and 1%
of time for the simple and the real scenarios, respectively.

To study the effect of the uncovered users’ penalty, we
vary the hyper-parameter that scales it (η) and plot the
percentage of covered users in the network and the sum
throughput in Fig. 7 and Fig. 8 for the simple scenario. We
obtain the same results for the real scenario in Fig. 9 and
Fig. 10. We notice here that there is a trade-off between the
sum throughput and the percentage of covered users. As (η)
increases, the percentage of covered users increases while
the sum throughput decreases. This is because achieving a
higher sum throughput might lead to blocking users with low
CQIs to other cells. More specifically, since low CQIs users
consume cell resources and do not contribute much to the
sum throughput, the agent may opt to block them and give
more resources to users with high CQIs (which will benefit
the sum throughput of the network).

For a more elaborate understanding of this work, we plot
the reward function that the RL agent tries to maximize
(which we call the penalized sum throughput) in Fig. 11
for the real scenario with µ = 2 and η = 2. We compare
the penalized throughput reward with the RL agent and BL
setting. We observe that the reward function of the proposed
RL algorithm is the highest, which is the main target of this

14 VOLUME ,

FIGURE 9. Effect of Uncovered Users Penalty (η) on Percentage of
Covered Users (Real Scenario)

FIGURE 10. Effect of Uncovered Users Penalty (η) on Sum Throughput
(Real Scenario)

work. Nevertheless, we see that, although the sum throughput
of the BL with MIMO ON is naturally higher than that
with MIMO OFF as seen in Fig. 5, the reward follows
a contradictory behavior. This reward behavior is because
the MIMO penalty, which is subtracted, affects the overall
reward in case MIMO is turned ON by default, while it is
zero in case MIMO is turned OFF.

After training, we tested the fully trained model for one
episode (250 steps) to evaluate its performance. In Fig. C,
we show the network sum throughput versus the number of
steps for η = 2 and µ = 0, 2 and 5, respectively.

As expected, for smaller µ’s, the agent tends to achieve
higher throughput by having MIMO ON with less regard
to the consumed energy. On the other hand, as µ increases,
the agent starts to turn MIMO OFF for energy conservation
to maximize the overall reward; this generally results in a
decrease in the achieved network throughput. Nevertheless,
in the three cases reported in Fig. Fig. C, we observe that the
average sum throughput achieved by the RL agent is higher
than the BL model (with MIMO ON or OFF); however, the
throughput gain achieved is affected by the value of µ as
expected.

From another perspective, we conducted additional ex-
periments to assess how well the model performs under
varying environmental conditions, such as changes in the
number of users. In Fig. 13, we compare the performance

FIGURE 11. Penalized Sum Throughput

of our hybrid agent, trained with 40 users, when tested in
a setting with 40 users against its performance when tested
with 50 users. The MIMO Energy penalty (µ) is set to 0,
and the uncovered users’ penalty (η) is set to 2. Fig. 13
shows that the overall sum throughput increases with the
higher user count. Notably, our agent consistently achieves
higher throughput compared to the baseline scenario despite
environmental changes. Additionally, Fig. 14 illustrates the
penalized throughput, or reward, for the same scenario.

It is important to note that each step represents 0.2 sec-
onds, meaning that even with significant environmental shifts
requiring the agent to explore new actions, convergence may
occur within approximately 5000 steps, equivalent to about
16 minutes—a relatively short duration in the context of
cellular networks.

Moreover, we are exploring the potential of incorporating
online learning into our future research. This approach would
allow the agent to continue learning beyond the initial offline
training phase, enhancing confidence in its decision-making
over time. However, considerations regarding memory and
computational resources must be carefully addressed.

VI. Conclusion
In this paper, we propose a novel layered RL agent to
attain the aim of having a self-optimizing mobile network.
The agent aims to strike a balance between maximizing the
network throughput, minimizing energy consumption, and
enhancing the network coverage. Our proposed framework
is general enough to allow mobile operators to select their
preferred network optimization cost. Moreover, the layered
architecture of our novel RL agent addresses the fact that
some of our control parameters are discrete, and others are
continuous. The proposed architecture provides an efficient,
yet effective means of addressing the hybrid nature of
our action space. We tested our proposed RL agent over
two scenarios; a simple (proof of concept) scenario and a
realistic network scenario that matches the configuration of
one of the biggest mobile operators in Egypt in the Fifth
Settlement neighborhood in Cairo. Our results show some

VOLUME , 15

:

(a) µ = 0 (b) µ = 2 (c) µ = 5

FIGURE 12. Sum throughput for a testing episode with η = 2.

FIGURE 13. Sum Throughput in the testing phase with environment
change

FIGURE 14. Reward in the testing phase with environment change

significant performance gains over the baseline approaches.
Also, we showed that by controlling the parameters reward
function, mobile operators could optimize diverse network
performance metrics (e.g., throughput, energy efficiency, and
coverage). As a future direction of this work, we aim to in-
vestigate replacing the binary vector m, which represents the
MIMO activity vector, with an integer vector that represents
the number of active antennas in a certain cell. This will give
a more flexible tradeoff between the performance and the

energy consumption as we will not be forced to switch ON
or switch OFF all antennas of the base stations completely.

REFERENCES
[1] Ericsson. Ericsson mobility report q2 2022. [Online]. Available:

https://www.ericsson.com/4a4be7/assets/local/reports-papers/
mobility-report/documents/2022/ericsson-mobility-report-q2-2022.
pdf

[2] S. Mishra and N. Mathur, “Load balancing optimization in lte/lte-a
cellular networks: a review,” arXiv preprint arXiv:1412.7273, 2014.

[3] S. Buzzi, I. Chih-Lin, T. E. Klein, H. V. Poor, C. Yang, and A. Zap-
pone, “A survey of energy-efficient techniques for 5g networks and
challenges ahead,” IEEE Journal on Selected Areas in Communica-
tions, vol. 34, no. 4, pp. 697–709, 2016.

[4] J. A. Khan, H. K. Qureshi, and A. Iqbal, “Energy management
in wireless sensor networks: A survey,” Computers & Electrical
Engineering, vol. 41, pp. 159–176, 2015.

[5] 3GPP ETSI TS 36.902 V9.3.1, 3GPP, Evolved Universal Terres-
trial Radio Access Network (E-UTRAN); Self-Configuring and Self-
Optimizing Network (SON) Use Cases and Solutions, 2011.

[6] Ericsson. Defining ai native: A key enabler for advanced intelligent
telecom networks. [Online]. Available: https://www.ericsson.com/
4a4be7/assets/local/reports-papers/mobility-report/documents/2022/
ericsson-mobility-report-q2-2022.pdf

[7] J. Hoydis, F. A. Aoudia, A. A. Valcarce, and H. Viswanathan, “Toward
a 6g ai-native air interface,” IEEE Communications Magazine, vol. 59,
no. 5, pp. 76–81, 2021.

[8] J. Guo, C.-K. Wen, and S. Jin, AI-Native Air Interface. Cham:
Springer International Publishing, 2024, pp. 143–163.

[9] M. Polese, L. Bonati, S. D’oro, S. Basagni, and T. Melodia, “Under-
standing o-ran: Architecture, interfaces, algorithms, security, and re-
search challenges,” IEEE Communications Surveys Tutorials, vol. 25,
no. 2, pp. 1376–1411, 2023.

[10] A. Garcia-Saavedra and X. Costa-Pérez, “O-ran: Disrupting the vir-
tualized ran ecosystem,” IEEE Communications Standards Magazine,
vol. 5, no. 4, pp. 96–103, 2021.

[11] L. Bonati, S. D’Oro, M. Polese, S. Basagni, and T. Melodia, “Intelli-
gence and learning in o-ran for data-driven nextg cellular networks,”
IEEE Communications Magazine, vol. 59, no. 10, pp. 21–27, 2021.

[12] K. Attiah, K. Banawan, A. Gaber, A. Elezabi, K. Seddik, Y. Gadallah,
and K. Abdullah, “Load balancing in cellular networks: A reinforce-
ment learning approach,” in Consumer Communications & Networking
Conference (CCNC). IEEE, 2020, pp. 1–6.

[13] G. Alsuhli, K. Banawan, K. Attiah, A. Elezabi, K. Seddik, A. Gaber,
M. Zaki, and Y. Gadallah, “Mobility load management in cellular
networks: A deep reinforcement learning approach,” Accepted for
publication in IEEE Transactions on Mobile Computing, 2021.

[14] Y. Xu, W. Xu, Z. Wang, J. Lin, and S. Cui, “Load balancing for
ultradense networks: A deep reinforcement learning-based approach,”
IEEE Internet of Things Journal, vol. 6, no. 6, pp. 9399–9412, 2019.

[15] S. Musleh, M. Ismail, and R. Nordin, “Load balancing models based
on reinforcement learning for self-optimized macro-femto lte-advanced

16 VOLUME ,

https://www.ericsson.com/4a4be7/assets/local/reports-papers/mobility-report/documents/2022/ericsson-mobility-report-q2-2022.pdf
https://www.ericsson.com/4a4be7/assets/local/reports-papers/mobility-report/documents/2022/ericsson-mobility-report-q2-2022.pdf
https://www.ericsson.com/4a4be7/assets/local/reports-papers/mobility-report/documents/2022/ericsson-mobility-report-q2-2022.pdf
https://www.ericsson.com/4a4be7/assets/local/reports-papers/mobility-report/documents/2022/ericsson-mobility-report-q2-2022.pdf
https://www.ericsson.com/4a4be7/assets/local/reports-papers/mobility-report/documents/2022/ericsson-mobility-report-q2-2022.pdf
https://www.ericsson.com/4a4be7/assets/local/reports-papers/mobility-report/documents/2022/ericsson-mobility-report-q2-2022.pdf

heterogeneous network,” Journal of Telecommunication, Electronic
and Computer Engineering (JTEC), vol. 9, no. 1, pp. 47–54, 2017.

[16] H. Zhang, X.-s. Qiu, L.-m. Meng, and X.-d. Zhang, “Achieving
distributed load balancing in self-organizing lte radio access network
with autonomic network management,” in 2010 IEEE Globecom
Workshops. IEEE, 2010, pp. 454–459.

[17] A. Mukherjee, D. De, and P. Deb, “Power consumption model of
sector breathing based congestion control in mobile network,” Digital
Communications and Networks, vol. 4, no. 3, pp. 217–233, 2018.

[18] G. Alsuhli, K. Banawan, K. Seddik, and A. Elezabi, “Optimized power
and cell individual offset for cellular load balancing via reinforcement
learning,” in IEEE WCNC, 2021, pp. 1–7.

[19] G. Alsuhli, H. A. Ismail, K. Alansary, M. Rumman, M. Mohamed,
and K. G. Seddik, “Deep reinforcement learning-based cio and energy
control for lte mobility load balancing,” in Consumer Communications
& Networking Conference (CCNC). IEEE, 2021, pp. 1–6.

[20] G. Alsuhli, K. Banawan, K. Seddik, and A. Elezabi, “Optimized power
and cell individual offset for cellular load balancing via reinforcement
learning.”

[21] M. Aboelwafa, G. Alsuhli, K. Banawan, and K. G. Seddik, “Self-
optimization of cellular networks using deep reinforcement learning
with hybrid action space,” in 2022 IEEE 19th Annual Consumer
Communications & Networking Conference (CCNC). IEEE, 2022,
pp. 223–229.

[22] E. Oh, B. Krishnamachari, X. Liu, and Z. Niu, “Toward dynamic
energy-efficient operation of cellular network infrastructure,” IEEE
Communications Magazine, vol. 49, no. 6, pp. 56–61, 2011.

[23] Y. Cui, S. Xiao, X. Wang, Z. Lai, Z. Yang, M. Li, and H. Wang,
“Performance-aware energy optimization on mobile devices in cellular
network,” IEEE Transactions on Mobile Computing, vol. 16, no. 4, pp.
1073–1089, 2016.

[24] M. Aboelwafa, M. Zaki, A. Gaber, K. Seddik, Y. Gadallah, and
A. Elezabi, “Machine learning-based mimo enabling techniques for
energy optimization in cellular networks,” in Consumer Communica-
tions & Networking Conference (CCNC). IEEE, 2020, pp. 1–6.

[25] A. Anzaldo and Á. G. Andrade, “Buffer transference strategy for
power control in b5g-ultra-dense wireless cellular networks,” Wireless
Networks, pp. 1–8, 2022.

[26] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C.
Liang, and D. I. Kim, “Applications of deep reinforcement learning
in communications and networking: A survey,” IEEE Communications
Surveys & Tutorials, vol. 21, no. 4, pp. 3133–3174, 2019.

[27] S. Chinchali, P. Hu, T. Chu, M. Sharma, M. Bansal, R. Misra,
M. Pavone, and S. Katti, “Cellular network traffic scheduling with
deep reinforcement learning,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 32, no. 1, 2018.

[28] F. Meng, P. Chen, L. Wu, and J. Cheng, “Power allocation in multi-user
cellular networks: Deep reinforcement learning approaches,” IEEE
Transactions on Wireless Communications, vol. 19, no. 10, pp. 6255–
6267, 2020.

[29] Y. Hao, F. Li, C. Zhao, and S. Yang, “Delay-oriented scheduling in
5g downlink wireless networks based on reinforcement learning with
partial observations,” IEEE/ACM Transactions on Networking, 2022.

[30] P. Lin, Q. Song, J. Song, A. Jamalipour, and F. R. Yu, “Cooperative
caching and transmission in comp-integrated cellular networks using
reinforcement learning,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 5, pp. 5508–5520, 2020.

[31] O. Delalleau, M. Peter, E. Alonso, and A. Logut, “Discrete and
continuous action representation for practical rl in video games,” arXiv
preprint arXiv:1912.11077, 2019.

[32] M. Neunert, A. Abdolmaleki, M. Wulfmeier, T. Lampe, T. Springen-
berg, R. Hafner, F. Romano, J. Buchli, N. Heess, and M. Riedmiller,
“Continuous-discrete reinforcement learning for hybrid control in
robotics,” in Conference on Robot Learning. PMLR, 2020, pp. 735–
751.

[33] H. Fu, H. Tang, J. Hao, Z. Lei, Y. Chen, and C. Fan, “Deep multi-
agent reinforcement learning with discrete-continuous hybrid action
spaces,” arXiv preprint arXiv:1903.04959, 2019.

[34] C. Huang, H. Zhang, L. Wang, X. Luo, and Y. Song, “Mixed deep
reinforcement learning considering discrete-continuous hybrid action
space for smart home energy management,” Journal of Modern Power
Systems and Clean Energy, vol. 10, no. 3, pp. 743–754, 2022.

[35] M. Diamanti, G. Fragkos, E. E. Tsiropoulou, and S. Papavassiliou,
“Unified user association and contract-theoretic resource orchestration

in noma heterogeneous wireless networks,” IEEE Open Journal of the
Communications Society, vol. 1, pp. 1485–1502, 2020.

[36] F. B. Mismar, J. Choi, and B. L. Evans, “A framework for automated
cellular network tuning with reinforcement learning,” IEEE Transac-
tions on Communications, vol. 67, no. 10, pp. 7152–7167, 2019.

[37] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[38] Q. Zhang, T. Du, and C. Tian, “A sim2real method based on ddqn
for training a self-driving scale car,” Mathematical Foundations of
Computing, vol. 2, no. 4, p. 315, 2019.

[39] J. Zhu, F. Wu, and J. Zhao, “An overview of the action space for
deep reinforcement learning,” in 2021 4th International Conference
on Algorithms, Computing and Artificial Intelligence, 2021, pp. 1–10.

[40] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan,
V. Kumar, H. Zhu, A. Gupta, P. Abbeel et al., “Soft actor-critic
algorithms and applications,” arXiv preprint arXiv:1812.05905, 2018.

[41] R. S. Sutton, D. A. McAllester, S. P. Singh, Y. Mansour et al.,
“Policy gradient methods for reinforcement learning with function
approximation.” in NIPs, vol. 99. Citeseer, 1999, pp. 1057–1063.

[42] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[43] V. François-Lavet, P. Henderson, R. Islam, M. Bellemare, and
J. Pineau, “An introduction to deep reinforcement learning,” Founda-
tions and Trends® in Machine Learning, vol. 11, no. 3-4, pp. 219–354,
2018.

[44] S. Adam, L. Busoniu, and R. Babuska, “Experience replay for real-
time reinforcement learning control,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), vol. 42,
no. 2, pp. 201–212, 2012.

[45] T. T. Nguyen, N. D. Nguyen, and S. Nahavandi, “Deep reinforcement
learning for multiagent systems: A review of challenges, solutions,
and applications,” IEEE transactions on cybernetics, vol. 50, no. 9,
pp. 3826–3839, 2020.

[46] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 30, no. 1, 2016.

[47] S. Fujimoto, H. V. Hoof, and D. Meger, “Addressing func-
tion approximation error in actor-critic methods,” arXiv preprint
arXiv:1802.09477, 2018.

[48] R. Dubey, R. Loka, and A. M. Parimi, “Maintaining the frequency
of ai-based power system model using twin delayed ddpg (td3)
implementation,” in 2022 2nd International Conference on Power
Electronics & IoT Applications in Renewable Energy and its Control
(PARC). IEEE, 2022, pp. 1–4.

[49] N. Baard and T. L. van Zyl, “Twin-delayed deep deterministic policy
gradient algorithm for portfolio selection,” in 2022 IEEE Symposium
on Computational Intelligence for Financial Engineering and Eco-
nomics (CIFEr). IEEE, 2022, pp. 1–8.

[50] M. Shehab, A. Zaghloul, and A. El-Badawy, “Low-level control of a
quadrotor using twin delayed deep deterministic policy gradient (td3),”
in 2021 18th International Conference on Electrical Engineering,
Computing Science and Automatic Control (CCE). IEEE, 2021, pp.
1–6.

[51] S. Bai, S. Song, S. Liang, J. Wang, B. Li, and E. Neretin, “Uav
maneuvering decision-making algorithm based on twin delayed deep
deterministic policy gradient algorithm,” Journal of Artificial Intelli-
gence and Technology, vol. 2, no. 1, pp. 16–22, 2022.

[52] Z. E. Liu, Q. Zhou, Y. Li, and S. Shuai, “An intelligent energy
management strategy for hybrid vehicle with irrational actions using
twin delayed deep deterministic policy gradient,” IFAC-PapersOnLine,
vol. 54, no. 10, pp. 546–551, 2021.

[53] T. Lillicrap, J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Sil-
ver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[54] E. LTE, “Evolved universal terrestrial radio access (e-utra); physical
layer procedures,” ETSI TS, pp. 136–213, 2017.

[55] E. TSGR, “Lte: Evolved universal terrestrial radio access (e-utra),”
Multiplexing and channel coding (3GPP TS 36.212 version 10.3. 0
Release 10) ETSI TS, vol. 136, no. 212, p. V10, 2011.

[56] ETSI, “5G NR, radio resource control (RRC), protocol specification,
3GPP TS 38.331 version 15.3.0 release 15,” 2018.

VOLUME , 17

:

[57] N. Baldo, M. Miozzo, M. Requena-Esteso, and J. Nin-Guerrero, “An
open source product-oriented lte network simulator based on ns-3,” in
Proceedings of the 14th ACM international conference on Modeling,
analysis and simulation of wireless and mobile systems, 2011, pp.
293–298.

[58] P. Gawłowicz and A. Zubow, “ns3-gym: Extending openai gym for
networking research,” arXiv preprint arXiv:1810.03943, 2018.

[59] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore,
P. Dhariwal, C. Hesse, O. Klimov, A. Nichol et al., “Stable baselines,”
2018.

[60] D. Krajzewicz and C. Rossel, “Simulation of urban mobility (sumo),”
Centre for Applied Informatics (ZAIK) and the Institute of Transport
Research at the German Aerospace Centre, 2007.

[61] A. Marella, A. Bonfanti, G. Bortolasor, and D. Herman, “Implement-
ing innovative traffic simulation models with aerial traffic survey,”
Transport infrastructure and systems, pp. 571–577, 2017.

Authors
Bishoy S. Attia received the B.Sc.
(Hons.) in Electronics and Communi-
cations Engineering from The Ameri-
can University in Cairo (AUC). Cur-
rently pursuing MASc. degree in Com-
puter Science at Simon Fraser Uni-
versity (SFU). He is currently a Re-
search Assistant and Teaching assistant

at School of Computing science, SFU. Before joining SFU,
he was research Assistant AUC. His research interests in-
clude applications of Reinforcement learning in Computer
architecture, Memory architecture, processing in/near mem-
ory, secure cache and memory systems.

Aamen Elgharably received the
B.Sc. in Electronics and Communica-
tions engineering from Alexandria Uni-
versity, Alexandria Egypt in 2023. He is
currently working as RAN Planning En-
gineer at VOIS, additionally he is a re-
search assistant in American University
in Cairo (AUC). His research interests
include Open RAN, RAN optimization
scalability and Reinforcement learning.

Mariam Nabil received the B.Sc.
(Hons.) and M.Sc. degrees in electrical
engineering from Alexandria University,
Alexandria, Egypt, in 2010 and 2015,
respectively, and the Ph.D. degree from
the American University in Cairo, Cairo,
Egypt, in 2022. She is currently an
Assistant Professor in the Computer,
Communications and Autonomous Sys-
tems Engineering program at NewGiza

University (NGU). Before joining NGU, she was an Assis-
tant Professor at Alexandria University and a Postdoctoral
researcher at AUC. Her research interests include appli-
cations of machine learning in communication networks,
autonomous vehicles and smart systems. She co-authored

numerous papers in reputable journals and conferences. She
has also reviewed for a number of esteemed journals.

Ghada Alsuhli earned her B.S. and
M.S. in Electronics and Communication
Engineering from Damascus University,
Syria (2009, 2015), and completed her
Ph.D. in Electronics and Communica-
tion Engineering at Cairo University,
Egypt (2019). Her academic journey
was enriched by roles at esteemed re-
search centers including the National
Research Center, The American Univer-

sity in Cairo, Egypt, and the Khalifa University SoC Center,
UAE. Currently, she serves as a Post-Doctoral Researcher
at Khalifa University, leading several projects focused on
efficient hardware implementation for AI and post-quantum
cryptography. Her research encompasses embedded systems,
energy-efficient IoT solutions, edge computing, efficient
hardware implementation, and AI applications for wireless
communications and biomedical engineering. She is the
primary author of numerous papers in reputable journals
and conferences, she has also authored a book on efficient
DNN hardware implementation. Her contributions extend to
reviewing for esteemed journals and committee memberships
for international conferences.

Karim Banawan (IEEE STM’13,
M’18, SM’24) received the B.Sc. and
M.Sc. degrees, with highest honors, in
electrical engineering from Alexandria
University, Alexandria, Egypt, in 2008,
and 2012, respectively, and the M.Sc.
and Ph.D. degrees in electrical engineer-
ing from the University of Maryland
at College Park, MD, USA, in 2017

and 2018, respectively, with his Ph.D. thesis on private
information retrieval and security in networks. He was the
recipient of the Distinguished Dissertation Fellowship from
the Department of Electrical and Computer Engineering,
at the University of Maryland College Park, for his Ph.D.
thesis work. In 2019, he joined the department of electrical
engineering, Alexandria University, as an assistant professor.
His research interests include information theory, wireless
communications, physical layer security, and private infor-
mation retrieval.

Karim G. Seddik (Senior Member,
IEEE) received the B.Sc. (Hons.) and
M.Sc. degrees in electrical engineering
from Alexandria University, Alexandria,
Egypt, in 2001 and 2004, respectively,
and the Ph.D. degree from the Univer-
sity of Maryland, College Park, MD,

18 VOLUME ,

USA, in 2008. He is currently a Pro-
fessor in the Electronics and Communi-

cations Engineering Department at the American University
in Cairo (AUC), and an Associate Dean of graduate studies
and research with the School of Sciences and Engineering
(SSE), AUC. Before joining AUC, he was an Assistant
Professor at Alexandria University. His research interests
include applications of machine learning in communication
networks, intelligent reflecting surfaces, age of information,
cognitive radio communications, and layered channel coding.
He currently serves as an Editor for the IEEE Transactions
on Machine Learning in Communications and Networking
journal. He has served on the technical program committees
for numerous IEEE conferences in the areas of wireless
networks and mobile computing. He was a recipient of
the American University in Cairo Faculty Merit Award for
Excellence in Research and Creative Endeavors in 2021.
He was a recipient of the State Encouragement Award in
2016 and the State Medal of Excellence in 2017. He was
a recipient of the Certificate of Honor from the Egyptian
President for being ranked first among all departments in the
College of Engineering, Alexandria University, in 2002. He
received the Graduate School Fellowship in 2004 and 2005
and the Future Faculty Program Fellowship in 2017 from the
University of Maryland. He also co-authored a conference
paper that received the Best Conference Paper Award from
the IEEE Communication Society Technical Committee on
Green Communications and Computing in 2019.

VOLUME , 19

	INTRODUCTION
	Literature Review
	Technical Background: Reinforcement Learning
	Double Deep Q-Learning (DDQN)
	Twin Delayed Deep Deterministic Policy Gradient (TD3)

	Problem Description and Proposed Approach
	System Model
	eNodeBs
	UEs

	Reinforcement Learning Framework
	Problem Formulation
	Algorithm

	Performance Evaluation
	Network Simulator
	Simulation Setup:
	Simple Scenario
	Real Scenario

	Results

	Conclusion
	REFERENCES

