Machine Learning-based Module for Monitoring
LTE/WiF1 Coexistence Networks Dynamics

Ahmed M. El-Shal”, Badiaa Gabr*, Laila H. Aﬁnyr, Amr El-Sherif™, Karim G. Seddik§, and Mustafa Elattar’

*Center for Informatics Science, Nile university, Giza 12588, Egypt
tSchool of Information Technology, New Giza university, Giza 12256, Egypt
“*Wireless Intelligent Networks Center (WINC), Nile university, Giza 12588, Egypt
8Electronics and Communications Engineering Department, American University in Cairo, New Cairo 11835, Egypt.

Abstract—Long-Term Evolution (LTE) technology is expected
to shift some of its transmissions into the unlicensed band to
overcome the spectrum scarcity problem. Nevertheless, in order
to effectively use the unlicensed spectrum, several challenges have
to be addressed. The most important of which is how to coexist
with the incumbent unlicensed WiFi networks. Incorporating the
“intelligence” component into the network radios is foreseen to
resolve the intrinsic network challenges, rather than conventional
non-adaptive action plans. Specifically, an intelligent cognitive
engine (CE) that continuously monitors the environment, and
dynamically decides upon the best mechanisms and their con-
figuration to suit a given scenario, is essential. In this work,
we propose a machine learning-based monitoring module that
provides real-time situational awareness that is envisaged to
provide the necessary adaptivity, intelligence, autonomy, and
learning capabilities. The objective of the proposed intelligent
monitoring module is to sense, assess and select the most
appropriate scheduling and resource allocation (SRA) algorithm
at each LTE base station, according to the different coexistence
scenarios. We propose a random forest classifier that maximizes
the overall LTE throughput without degrading that of the WiFi
network. Numerical simulations are presented to demonstrate
the effectiveness of the monitoring module in achieving robust
adaptive results under new unfamiliar network environments.
Furthermore, we shed some lights on the comparison between the
performance of multiple SRA algorithms under dynamic network
settings.

keywords— Coexistence, network monitoring, LTE unli-
censed (LTE-U), licensed-assisted access (LAA), CSAT, LBT,
NS-3, machine learning, random forest.

I. INTRODUCTION

Throughout the past few decades, cellular networks have
been required to accommodate exponentially growing numbers
of connected devices. Undoubtedly, the scarcity of licensed
spectrum introduces crucial challenges that hinder providing
the connected users with a sustained performance and/or the
anticipated quality of service [1]. Towards this end, carrier
aggregation (CA) has received immense attention from both
academia and industry to open new horizons for future cellu-
lar networks. Particularly, exploiting the unlicensed spectrum
bands, some of the networks transmissions are to be offloaded
to decongest the licensed spectrum [2]-[4]. However, this ne-
cessitates investigating the arising coexistence issues between
the various technologies being deployed in the unlicensed
spectrum and the incumbent technologies (e.g., IEEE 802.11
(WiFi), Bluetooth, IEEE 802.15.4 (Zigbee), LORA, SIGFOX,

..., etc) [5]. One of which is the fact that such coexistence
entails that no significant deterioration is imposed on the
performance of the main incumbent unlicensed technologies
[2], [6], [7]. Current standardization efforts hence focus on the
need for efficient and dynamic spectrum access techniques to
maintain adequate performance for coexisting systems.

LTE-unlicensed (LTE-U) and LTE-licensed assisted access
(LTE-LAA) have been introduced as variants for the LTE
standard to operate over the unlicensed spectrum. With par-
ticular focus on the LTE-LAA/LTE-U and WiFi coexistence
scenario, as a promising solution to the sharp shortage of
licensed spectrum resources, several research attempts have
been investigating the challenges and limitations imposed
by such coexistence [8]-[12]. The LTE is a schedule-based
technology, where the LTE Evolved Node B (eNB) schedules
during each LTE subframe some resources to each one of
its associated user equipments (UEs), without the need for
sensing the channel. Contrarily, the WiFi is a contention-based
technology that has to sense the carrier before any transmission
and perform a complete clear carrier assessment (CCA) by
using sensing mechanisms, such as a request to send/clear
to send (RTS/CTS), carrier sensing multiple access/collision
avoidance (CSMA/CA), ..., etc. This major difference between
the two technologies in both the MAC and PHY layers gives
the LTE the privilege to access the medium more frequently
than the WiFi, causing severe starvation and performance
degradation to the latter [1], [6], [7].

To this end, the LTE network has to change its schedule-
based behavior by applying new channel access mechanisms.
Listen-before-talk (LBT), carrier sensing adaptive transmission
(CSAT), almost blank subframe (ABS) and channel selection
algorithms are some of the main scheduling and resource allo-
cation (SRA) algorithms that have been proposed for the LTE-
LAA/LTE-U networks [13]-[15]. They offer an uncoordinated,
yet friendly, coexistence with WiFi. We briefly overview the
main state-of-the-art SRA mechanisms that we will build upon
throughout this work as follows.

A. Overview of the state-of-the-art SRA mechanisms for
LTE/WiFi Coexistence

1) Listen-before-talk (LBT): Listen-before-talk is an
energy-detection based channel access scheme. That is, an
LTE-LAA transmitter senses the unlicensed carrier before



its transmission to avoid collisions with other LAA or WiFi
nodes, for a fixed or random contention window (CW)
[16], [17]. Upon detecting an idle channel, a transmission
opportunity (TXOP) of fixed duration is assigned for
transmitting the eNB’s packets.

2) Carrier Sensing Adaptive Transmission (CSAT): Unlike
the LTE-LAA, LTE-U uses carrier sensing adaptive trans-
mission (CSAT) which is based on duty cycles that define
the channel occupancy ratio between the LTE-U and WiFi
networks [15]. The eNB has to monitor the WiFi network
activity for a long enough time (10 to 200 ms) in order
to decide upon its optimal duty cycle ratio to guarantee
fair spectrum sharing with WiFi. Particularly, CSAT-based
schemes schedule periodic “on/off” durations, during which
the eNB gains/defers access to the channel. Thus, the main
challenge in CSAT scheduling mechanisms is the optimal fair
allocation of the “on” and “off” periods within each CSAT
cycle.

B. Related work

Several research works have proposed enhancements and
modifications to the aforementioned basic SRA mechanisms
to tackle the LTE/WiFi coexistence problem. In [8], the authors
introduced a fairness framework between LTE-LAA and WiFi
devices based on finding the optimal channel occupation time
ratio between the two systems. In [9], a trade-off between en-
ergy usage and throughput is considered to guarantee fairness
and efficient band-sharing by allowing the receivers to join the
channel sensing process with its transmitters. By studying the
effect of CCA energy detection (ED) threshold in the coexis-
tence case, the authors in [10] concluded that increasing the
CCA threshold reduces the sensing range of the eNBs. Another
SRA algorithm of interest is the channel observation-based
LBT (CoLBT), which is based on the CW size adaptation [18].
In [19], a varying LTE TXOP is introduced together with a
variable muting period, during which WiFi has the opportunity
to transmit, thereby achieving fairness between both networks.

In [11], the authors discuss fair channel access via chance
constraint optimization based on CSAT algorithm. In [12],
the authors propose a Q-learning based CSAT to optimally
adapt the LTE-U duty cycle based on Markov decision process
(MDP) for the purpose of maximizing the aggregated LTE-U
and WiFi throughputs.

Despite the significant performance gains brought by the
proposed SRA mechanisms and their modified versions, prac-
tical coexistence setups will still inherently suffer from other
unaddressed challenges. The ongoing dynamic changes in the
network imply that no specific SRA algorithm is preferable
all the time, which gives rise to the need for adapting the
selected SRA algorithm according to the network scenario
at hand. In that regard, machine learning plays a vital role
in incorporating an intelligence component that acts as a
promising solution to include knowledge about when and
how to use particular coexistence strategies. In this paper, we
propose an eNB-based monitoring module that is responsible
for sensing the current network environment for the purpose

of optimizing the overall network performance. Such moni-
toring module will be continuously monitoring and assessing
the real-time performance of the deployed networks. It is
noteworthy that such task is indeed challenging owing to the
critical need for carrying out such evaluation as generically as
possible to account for all the possible disparities. Moreover,
the monitoring module should continuously be updating the
operating scenarios categorization. The devised module aims
at selecting the fittest coexistence mechanism that is capable of
maximizing the overall system performance. For this purpose,
we implement a random forest (RF) classifier which has
the potential to distinguish between the diverse underlying
wireless environments with different network setups. Once the
encountered network is classified by the proposed monitoring
module, the eNB is thereby able to select the optimum
coexistence mechanism to operate. To the best of the authors’
knowledge, this is the first work to compare the performance of
multiple SRA algorithms under different and dynamic network
settings.

The rest of the paper is organized as follows. Section
IT presents the proposed system model. In Section III, the
implemented SRA algorithms are demonstrated. Section IV,
proposes the machine learning based monitoring module.
Simulation results and main insights are discussed in Section
V. The paper is concluded in Section VI

II. SYSTEM MODEL
A. Network and Traffic Model

We consider an indoor setup of LTE-LAA/LTE-U and WiFi
coexistence in the 5 GHz unlicensed spectrum within an area
of dimensions 120m x 50m. The coexistence network consists
of N eNBs and M WiFi APs sharing an unlicensed channel
of bandwidth B = 20 MHz. The offloaded eNBs from the
licensed to the unlicensed spectrum are determined by the LTE
operator, and the mechanism of such offloading is beyond the
scope of this paper. We study the downlink transmissions since
the uplink transmissions are to be assigned to the licensed
bands, and are hence not accounted for in this work. Each eNB
serves U UEs, whereas each WiFi AP has S stations (STAs)
randomly deployed within its coverage area. We consider the
users’ traffic arrivals to follow a Poisson process under the file
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Fig. 1: Snapshot of the L/L layout of 3 eNBs and 2 WiFi
APs placed along the same line.
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Fig. 2: Snapshot of the C/C layout of 4 eNBs and 4 WiFi
APs placed at the corners.

transfer protocol mode 1 (FTPM 1). Let A denote the traffic
arrival rate for each of the collocated networks.

We consider four different layouts of the unlicensed LTE
and WiFi coexistence. Line-line (denoted as /L) and corner-
corner (denoted as C'/C') layouts, imply a linear and corner
deployments, respectively, of all the eNBs and APs in the
network, as shown in Fig. 1 and Fig. 2. The C/C layout is of
particular interest since it has the potential to account for the
impact of the hidden nodes on the overall performance. For
more generalized settings, we further consider a line-corner
setup, which we hereafter denote as L/C, where eNBs are
deployed along a line, while APs are located at the corners
of the area of interest, as depicted in Fig. 3. Moreover, the
corner-line setting, denoted as C' — L, has the eNBs deployed
at the corners while the APs are located across a line, as
demonstrated in Fig. 4. All of the eNBs are assumed to
transmit at the same power level Pr, while the WiFi APs
and UEs transmit at power Py .
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Fig. 3: Snapshot of the L/C layout of 3 eNBs placed along
the same line and 4 WiFi APs placed at the corners.

B. LTE and WiFi transmissions model

LTE transmissions are scheduled centrally at the eNB. We
consider a cognitive setting, in which each eNB can ex-
ploit multiple diverse SRA algorithms that operate differently
according to the encountered environment setup. For this
purpose, and motivated by the continuous dynamic changes
of the environment, we propose equipping each eNB with a
monitoring module. The function of this prospective module is
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Fig. 4: Snapshot of the C/L layout of 5 eNBs located at the
corners and 4 WiFi APs placed along the same line.

to provide real-time situational awareness of the time-varying
environment. Accordingly, the eNB is able to decide upon
the best scheduling and resource allocation strategy to be
carried out, and thereby, achieves the optimum performance,
for both the LTE and WiFi networks. In this setup, a CE is
one from a set of different LTE-LAA/LTE-U scheduling and
resource allocation mechanisms to be explained in more details
in Section III.

III. OVERVIEW OF THE IMPLEMENTED SRA ALGORITHMS

In what follows, we present the operations of a number of
SRA algorithms that we adopt in this work.

A. Traditional LBT engine

The conventional Listen-before-Talk (LBT) cognitive engine
implements the traditional LBT algorithm demonstrated in
[20]. If the eNB selects this engine to operate, a complete
clear channel assessment (CCA) channel sensing process will
be required. In this engine, the CW adjustment procedure,
described in 3GPP Release 14 [21], is adopted. Initially, an
integer number is selected as the CW size, then it is adapted
according to the received Hybrid-ARQ (HARQ) feedback.
That is, the percentage of received negative acknowledgements
(NACKS) with respect to the number of ACKs and NACKs
altogether represents the adopted threshold, typically set to
80%, according to which the CW size is adjusted. The bigger
such percentage, the more likely the CW is to be increased
in order to overcome the detected collisions. Typically, the
maximum size for the C'W takes values from [7,1023].
Otherwise, if the percentage of NACKS does not cross this
80% threshold, the CW is reset to its minimum value, which
typically varies from 3 to 15. Obviously, the configuration of
the CW size and TXOP duration is of utmost importance to
the performance of the LBT engine.

B. Channel Observation-based LBT (CoLBT) engine

This engine is basically a variant of the traditional LBT
algorithm that employs an update rule based on the NACKs
to adjust the CW size [18]. In fact, the LTE protocol stack
induces inevitable latency that results in a delay of at least 4
ms for the users’ HARQ feedback after the transmission of the
subframe. This is the main reason subsequent feedbacks after



the first subframe of a TXOP are ignored. To overcome such
drawbacks, channel observation is performed to estimate the
channel collision probability. The CoLBT algorithm proposed
in [18] adaptively scales up or down the traditional LBT CW
from CWyre t0 CWeyrrent, based on the channel collision
probability observation. Each eNB can estimate the channel
observation-based collision probability, denoted as v, by ob-
serving the number of NACKS, S,,ck, in recent TXOP, as well
as the number of busy slots during the extended CCA (ECCA)
period, Sp. The collision probability v can then be calculated

as

U= Sb + Snack ’ (1)
Snack + Bobs

where B.ps is the total number of backoff slots between
two consecutive ECCA periods. When the eNB detects an
unsuccessful transmission, it will scale the CW up, otherwise,
it will be scaled down. The update rule is hence expressed as

min [ (CWin)” X 2CWpre, CWmaX), ifv>0

CWcurrent = (w

max

X CWPl‘e7 CWmin), ifvr=0
)

where CWax and CWo,;, are the maximum and minimum
contention windows size, respectively.

C. Dynamic (Adaptive) CSAT engine

In dynamic CSAT, known as Qualcomm’s CSAT [22], the
eNB monitors the channel to detect the number of active
WiFi APs during a period called AP-scan monitoring time.
The AP-scan time is initially set to 160 ms. This means that
each LTE-U eNB has to spend some time for monitoring the
environment before determining its CSAT duty cycle ratio,
defined as ﬁ where Ton and Topp are the “on”
and “off” periods within the cycle duration, respectively. In
[22], the selection of the CSAT duty cycle, is carried out
by the following procedure. The averaged medium utilization,
denoted by i, is defined as a weighted moving average of
the WiFi activity over the monitoring window. It is measured
by summing the durations of all WiFi transmissions detected
during the AP-scan period. Then, 1 is compared to two
thresholds, the lower threshold poy, and the upper threshold
thigh. Accordingly, Toy is adjusted as follows

TON + 5upa
Tox =
TON - 5d0w117

if ﬁ > Hhigh (3)
if ﬁ < HMow

where d,p and dgown are the increment and decrement values
that adjust Ton. If the measured 7 lies in between both
thresholds, Ton will remain unchanged.

In the context of this work, we will consider switching
between the aforementioned scheduling strategies in order
to achieve optimized performance according to the network
setting at hand.

IV. PROPOSED MACHINE LEARNING BASED MONITORING
MODULE

The proposed monitoring module is required to detect
whether the network has undergone any changes, and how.
Thus, it has to distinguish between the different environment
scenarios, thereby, the system can properly tune the operating
parameters to best adapt to the detected changes. To this end,
we will first make some reasonable assumptions that will
render this process viable:

1) LTE eNBs cooperation: We assume the eNBs within
the same operator cooperate together. Consequently, the
LTE operator knows the number of the collocated eNBs.

2) The number of WiFi APs is known to the eNBs:
Within the WiFi network, the APs are assumed to broad-
cast a beacon signal that is transmitted every 100 msec
[20]. The eNBs are able to listen to these beacon signals,
and hence, they will have the ability to determine the
number of the coexisting APs. It is to be emphasized
that only the WiFi APs numbers are known, while their
deployments are not.

3) Traffic arrival rate is known to the eNB and is the
same for both LTE and WiFi: We assume that each
eNB knows the traffic load of users’ requests. This traffic
load specifies whether the user is browsing, streaming,
or downloading files. Therefore, it indicates whether
the network experiences heavy traffic that needs higher
attention from the coexistence algorithms or not.

By exploiting these assumptions, the proposed module will
have the potential to ensure fair coexistence between both
systems. In order to be able to distinguish between different
environment scenarios, we implement a classifier that predicts
the most appropriate SRA engine that best matches the current
operating scenario. Basically, a classification algorithm tries to
learn from the data features, to be able to distinguish between
the different classes. In our model, the data features are the
network states and the classes are the different SRA algo-
rithms. In this regard, we have implemented different classi-
fiers streamline machine learning (ML) classifiers (i.e., logistic
regression, support vector machine, naive Bayes, decision tree,
random forest) as illustrated by Table 1. The performance of
each classifier in terms of the training accuracy and validation
accuracy is demonstrated. We decide to use the random forest
(RF) classifier as it offers the highest accuracy. In addition,
it works efficiently for the categorical and heterogeneous
datasets. It is one of the well known bagging technique with
a predefined number of decision trees. Each tree in the forest
gives a classification output. The impact of randomly selecting
a subset of training samples and isolating variables at each tree
node will produce a large number of decision trees. Therefore,
the sensitivity level of the RF classifier is less with respect
to other streamline ML classifiers because of the quality of
training samples and the robust decision trees.



[ Algorithm Name | Training Accuracy | Validation Accuracy | | Hyperparameter [ Value |
Logistic Regression 71.7% 63.6% Number of trees 10
Support Vector machine 67.0% 72.7% Classes weights {LBT = 0.7, CoOLBT = 1, CSAT = 0.6}
Naive Bayes 74.1% 63.6% Decision Tree kernel Entropy
Decision Tree 91.7% 95.4% Maximum depth 7
Random Forest 98.8% 95.4% Minimum samples per leaf 3

TABLE I: Training and validation accuracies for the different
environment classification algorithms.

V. EXPERIMENTAL SETUP AND RANDOM FOREST
TRAINING RESULTS

A. Simulations Setup

We demonstrate proof-of-concept numerical results that are
obtained using the NS-3 (the Network Simulator Version 3)
in LTE/WiFi coexistence environment, and specified by the
following parameters unless otherwise stated. In the NS-3
“laa-wifi-coexistence” module, the number of eNBs is N &
{2,3,4,5}, and the number of APs is M € {2,3,4,5} in the
L/L deployment scenario. For the C'/C layout, we consider
N € {4,5} and M € {4,5}. We assume that the number of
UEs per eNB is U = 5 and the number of assigned STAs per
AP is S = 5. We assume the traffic load to be A = {0.5,2.5,5}
files per second. The size of one file to be transmitted is 0.5
MB. The main control parameters of the coexistence engines
that are based on LBT are: TXOP = 10 ms, the ED threshold
Yth = —72 dBm, and the transmit powers of the LTE and WiFi
nodes are P;, = 18 dBm and Py = 18 dBm, respectively. As
for the dynamic CSAT-based algorithm, the control parameters
are as follows. The cycle duration Ton + Torpr = 640 ms,
dup = ddown = 0.05 ms, and the transmit powers Pr, and Py
which are similar to those of the LBT-based engines.

Adopting the aforementioned simulation setup, we could
come up with 108 scenarios that can be shared between
the different implemented coexistence algorithms. Those sce-
narios differ from one another in the number of eNBs,
N, the number of the APs, M, the traffic load, M\,
and the eNBs/APs deployments. We represent each sce-
nario by the 4-tuple (IV, M, “deployment type”, ), where the
“deployment type” € {L/L,C/C,L/C,C/L}.
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—%¥— Dynamic-CSAT

LTE throughput (MBps)
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Fig. 5: The LTE throughput obtained by the basic LBT,
CoLBT, and dynamic CSAT algorithms under different en-
vironment settings.

TABLE II: Random forest hyperparameters values

In Fig. 5, we show the LTE throughput of each coexistence
algorithm versus the 4-tuple representing the environment
setup. As evident from the figure, for the scenarios that expe-
rience low traffic load, the dynamic CSAT engine outperforms
the basic LBT and the CoLBT. This is because CSAT enforces
the LTE system to be silent during Torr Which is enough to
serve the low traffic load of the WiFi network. This in turn
decreases the collisions with the LTE during Ton, and hence
offers performance gains over the LBT and CoLBT schemes.
This performance trend changes as the traffic load increases,
where the basic LBT and/or CoLBT engines have shown to
offer performance gains up to 16% over the dynamic CSAT.
As clear from Fig. 5, the LBT and the CoLBT achieve very
near LTE throughput, since both rely on CSMA/CA. For some
scenarios, the CoLBT provides performance gains over the
LBT due to accounting for the collisions occurring due to
concurrent transmissions in an adaptive fashion.

B. Random Forest (RF) Training

In order to implement our random forest classifier, we use
Python-3 and the Scikit-Learn open source library, so we just
tune the hyperparameters of the RF classifier to achieve better
performance. The RF classifier hyperparameters we have used
are listed below [23]:

o Classes weights: By observing the statistical results ob-
tained by employing each of the coexistence algorithms
under the different network setups, we could find that the
data is imbalanced. We could then come up with adequate
weights for the loss of each class (algorithm) in order to
enforce the model to distinguish between the different
classes.

e Decision tree kernel: the criterion whereby the impurity
of data is reduced. Hence, data is split according to the
information gain.

e The maximum depth and minimum samples per leaf: we
define for each decision tree within the RF classifier the
maximum depth and minimum number of samples per
leaf to reduce overfitting.

o The number of trees within the RF classifier.

The searched out hyperparameters values are demonstrated
in Table II. These values have been shown to provide the best
training and validation results. Accordingly, the RF classifier
achieves 98.8% training accuracy, and 95.4% validation ac-
curacy. This means that our RF classifier is robust for new
unfamiliar datasets exhibiting similar network setups.

For the purpose of testing the RF classifier with unexplored
environment settings, we design different scenarios as shown
in Fig. 6. We found that the scenarios defined by high traffic



load, A > 2.5 are classified to carry out basic LBT. On
the other hand, for scenarios with intermediate traffic load,
1 < X\ < 2, the RF classifier selects the CoLBT engine. When
the traffic load is low, the network employs the dynamic CSAT
engine. As evident from Fig. 6, the proposed RF classifier is
able to detect the network scenario at hand, and thereby select
the fittest coexistence mechanism providing the optimum LTE
performance. It is of utmost importance to emphasize that
the optimized LTE performance does not deteriorate that of
the WiFi network. In light of the above discussion, it is
obvious that the proposed module is able to dynamically
switch between the different SRA strategies as the network
setting varies.
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Fig. 6: Predicted LTE throughput based on Random forest
classifier for unfamiliar network scenarios.

VI. CONCLUSION

This work aims at providing a proof-of-concept framework,
adopting machine learning for LTE/WiFi coexistence. Further-
more, it is extremely critical to take into account the vast
network variations due to mobility of users, varying traffic
loads and other channel conditions. To this end, we propose
a machine learning-based monitoring module that senses the
surrounding network environment. Having received real-time
measurements of the operating environments, the monitoring
module is then responsible for comparing multiple SRA algo-
rithms and quantifying their respective efficiency. In addition,
via the monitoring module, the operating scenario is contin-
uously characterized. Numerical simulations have shown the
proposed random forest classifier to offer robust performance
that effectively deals with unexplored environments. Finally,
we have highlighted several insights for the performance of
the different engines under different network scenarios.
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