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Abstract—Recently there has been a flurry of research on
the use of reconfigurable intelligent surfaces (RIS) in wireless
networks to create smart radio environments. In a smart radio
environment, surfaces are capable of manipulating the prop-
agation of incident electromagnetic waves in a programmable
manner to actively alter the channel realization, which turns the
wireless channel into a controllable system block that can be
optimized to improve overall system performance. In this article,
we provide a tutorial overview of reconfigurable intelligent
surfaces (RIS) for wireless communications. We describe the
working principles of reconfigurable intelligent surfaces (RIS)
and elaborate on different candidate implementations using
metasurfaces and reflectarrays. We discuss the channel models
suitable for both implementations and examine the feasibility of
obtaining accurate channel estimates. Furthermore, we discuss
the aspects that differentiate RIS optimization from precoding for
traditional MIMO arrays highlighting both the arising challenges
and the potential opportunities associated with this emerging
technology. Finally, we present numerical results to illustrate the
power of an RIS in shaping the key properties of a MIMO
channel.

I. INTRODUCTION

N the relentless pursuit to increase the capacity of wireless
I networks and support higher and higher data rates, wireless
system designers have sought to optimize every aspect of
communication systems. This has started with more spec-
trum efficient waveforms and multiplexing techniques (e.g.
OFDM), leveraging the spatial domain (e.g. MIMO), and
inching ever closer to the maximum theoretical capacity using
more advanced adaptive modulation and coding techniques.
On the network side, cellular networks have gotten denser with
more aggressive frequency reuse and inter-cell coordination
techniques have been developed to deal with the resulting
interference. However, the capacity of the network is still
ultimately limited by the unreliability of wireless propagation
and the available spectrum.

To tackle the shortage of spectrum, communications systems
have been steadily moving into higher frequency bands where
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amble unused spectra exist. However, the unreliable stochastic
nature of wireless propagation remains inevitable. Conven-
tional wisdom regards the wireless channel as an uncontrol-
lable stochastic link with inherent unreliability. Therefore, the
best we can do is to understand it, model it, and combat
its unpredictability with sophisticated signal processing at
the transmitter and the receiver. This traditionally includes
diversity techniques, beamforming, and adaptive coding and
modulation to squeeze as much usable capacity as possible.
Recently, with the advent of reconfigurable intelligent surfaces
(RIS) and the emergence of the concept of the smart radio
environment [1], [2], we might be able to also control, at least
partially, the wireless channel itself.

The idea of controlling the ambient environment to pro-
vide more favorable propagation characteristics represents
a paradigm shift in how we think about wireless systems
design. Instead of treating reflection and scattering in the
environment as uncontrollable phenomena whose effects can
only be modeled stochastically, they become part of the system
parameters that may be optimized, which can overcome many
of the challenges of wireless communications.

In general, the practically achievable rate over a wireless
link is limited by the order of the modulation and the number
of spatial streams. Both are decided according to the current
channel realization. The order of modulation is adapted ac-
cording to the signal strength perceived at the receiver, which
is a consequence of the channel gain. To keep error rates low
and avoid re-transmissions, a user at the cell edge will be
forced to use lower order modulation, and thus suffer from
lower rates. On the other hand, the number of spatial streams
is adapted according to the number of the usable eigenmodes
of the channel. A line-of-sight (LOS) link may enjoy high
channel gain, but will probably suffer from a spatially-sparse
low-rank channel, limiting the number of spatial streams
and consequently the achievable rate. The two scenarios are
illustrated in Fig. 1. These scenarios can arise in any wireless
network, but future communication systems are expected to be
especially affected. In particular, the propagation characteris-
tics at the higher frequency bands used in future generations
of communications systems, e.g. 30-100 GHz, will give rise to
these scenarios more often. Reconfigurable intelligent surfaces
can be used to alter the channel realization in these scenarios
and improve overall system performance dramatically.

Wireless communication systems have traditionally relied
on frequency bands extending from a few hundred megahertz
to a few gigahertz. This was mainly driven by the favor-
able propagation characteristics at these bands and the ease
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Fig. 1. A smart radio environment with multiple RISs. User A is far away
from the AP and suffers from low received signal strength, while user B has
amble received power but a low-rank ill-conditioned channel. The RISs can
be optimized to help in both scenarios.

of implementing efficient and cheap transceivers. Although
there exists a huge swath of spectrum at the millimeter-wave
range (30-100 GHz), it has been traditionally sought that
these frequencies are not suitable for wireless communica-
tion, especially outdoor cellular communications. Subsequent
intensive measurement campaigns [3] have shown the potential
of millimeter-wave bands when combined with directional
high gain antenna arrays. This has led to immense interest
in millimeter wave wireless communications.

This foray into higher frequency bands necessitated a reeval-
vation of channel modeling techniques. Communicating at
millimeter-wave frequencies poses a lot of challenges. The
channel at these frequencies is significantly more hostile
than at sub 6 GHz frequencies. Diffraction ceases to be a
reliable propagation mechanism with line-of-sight, first-order
reflections and scattering becoming much more dominant. This
means shadowing will have severe detrimental effects on the
average received power. Indeed, channel models developed
for millimeter-wave include a third state, in addition to line-
of-sight and non-line-of-sight, to explicitly model an outage
event when received power is too weak to establish a link [3].
Although adaptive beam steering techniques can improve the
reliability of millimeter-wave links, communications at these
frequencies remain very challenging.

Another challenge on millimeter-wave channels is that they
are spatially sparse which means that only a small number
of propagation paths exist between the transmitter and the
receiver. This is in contrast to the rich scattering assumption
usually utilized in sub 6 GHz channels. Although this sparsity
could be leveraged in channel estimation and precoding,
especially for hybrid analog/digital architectures [4], it also
limits the number of spatial data streams that can be supported
by the channel. Hence, the spatial multiplexing capability
of millimeter-wave channels is limited. In many cases, e.g.
LOS, only a single viable propagation path exists and spatial
multiplexing is not feasible.

The above challenges can be overcome by leveraging the
power of RISs. In low-received power scenarios, the RISs can
function as centralized beamformer to increase channel gains
or create a propagation path around major obstacles to restore
a link in an outage. While in LOS spatially-sparse scenarios,
the RIS can be used to emulate a rich scattering environment
to enhance the channel condition number and improve spatial
multiplexing capability. Different technologies can used to
implement an RIS [5], [6]. In its most simple form, an RIS can
be implemented as a dynamic reflectarray [5], whose elements
are omnidirectional antennas with controllable termination that
can be changed dynamically to backscatter and phase shift the
incident waveform. A more elaborate implementation would
be using a dynamically tunable metasurface [6], a 2D planar
form of metamaterials that have been shown to possess great
electromagnetic wave manipulation capabilities. Relying on
the metasurface implementation, an RIS element can not only
scatter and phase-shift the signal but can also act as an
anomalous mirror with a controllable reflection angle and even
polarization manipulation abilities. The implementation can
also greatly affect the link-budget as reflected and scattered
waves suffer from different path loss scaling. However, as the
RIS element gains more wave manipulation capabilities, the
optimization task gets more complicated.

In this article, we provide a comprehensive tutorial on re-
configurable intelligent surfaces for wireless communications.
We first discuss the different implementations of reconfig-
urable intelligent surfaces and elaborate on their differences
with respect to wave manipulation capabilities, channel mod-
eling, and the link budget. We then discuss the challenges of
optimizing the RIS parameters to benefit the overall system
performance, and also highlight the potential opportunities if
the challenges can be overcome. Finally, we provide numerical
results to illustrate the power of an RIS in shaping some key
properties of a MIMO channel to enhance performance and
simplify transceiver designs.

The rest of this article is organized as follows. In Section II,
we introduce different implementations to realize reconfig-
urable intelligent surfaces. In Section III, we discuss how
to incorporate the effects of the RISs in the channel model,
how the implementation technology can influence the choice
of the appropriate model, and how different implementations
can affect the link budget. In Section IV, we review the
state-of-the-art of RIS-assisted system optimization techniques
and discuss the difference between the optimization of RIS
configurations and precoding for traditional MIMO arrays
highlighting both the arising challenges and the potential
opportunities associated with this emerging technology. In
Section V, we present numerical results showing the power of
RIS in improving the spatial multiplexing capability of MIMO
channels and simplifying transceivers. Finally, we identify
some future directions in Section VI and conclude the article
in Section VIL

II. RECONFIGURABLE INTELLIGENT SURFACES

In a smart radio environment [1], shown in Fig. 1, one or
more RISs can be used to influence wireless propagation in a
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(a) A 48-element reflectarray-based RIS. Each element is a traditional antenna

connected to a phase shifter.

Fig. 2. Different Implementations of an RIS.

manner that is beneficial to the overall system performance.
For example, by increasing received power through beamform-
ing or by influencing the channel rank and condition number to
facilitate spatial multiplexing. In essence, any passive surface
that can be dynamically reconfigured to manipulate incident
electromagnetic waves and change the channel conditions
change can be called an RIS. This definition is valid regardless
of the particular implementation. Two main implementations
have been investigated in the literature; based on traditional
reflectarrays, or on metasurfaces. Regardless of the imple-
mentation, an RIS should be passive, that is it does not emit
any power of its own and only aims to manipulate existing
transmitted waves. In this aspect, RIS is similar to backscatter
technology and different from relaying. In this section, we
elaborate on these RIS implementations.

A. Reflectarray-based Implementation

As shown in Fig. 2, the simplest way to implement a
reconfigurable intelligent surface is to use a passive reflec-
tarray whose elements’ antenna termination can be controlled
electronically to backscatter and phase-shift the incident signal
[5]. Each element individually has a very limited effect on the
propagated waves, but a sufficiently large number of elements
can effectively manipulate the incident wave in a controllable
manner. To be effective, this implementation would require a
vastly large number of antenna elements, probably thousands
[7].

Each element in the reflectarray-based RIS is similar to a
tag in backscatter communications systems. However, there
are two main differences. The first one is that the reflections
are used to communicate information from the reflector to
the receiver in backscatter communications, while the RIS
aims only to help the ongoing transmission and does not
communicate information of its own in an RIS-assisted com-
munication scenario. The other one is the size and scale of
the RIS. Although a single element in a reflectarray-based
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(b) A 4-element metasurface-based RIS. Each element/tile is
a dynamic metasurafce with numerous tightly-packed meta-
atoms and can apply an arbitrary quasi-continuous phase
gradient.

RIS is similar to a backscatter tag, the elements of an RIS
work collectively, based on knowledge of the propagation
environment, over a very large area to induce significantly
more potent effects on the incident waves.

The reflectarray-based RIS can be thought of as providing
powerful centralized analog beamforming capabilities in ad-
vantageous locations that can be utilized by communication
endpoints. This can also lead to much simpler transmitters
and receivers by shifting complexity to the RIS and con-
trollers. Finally, note that the dimension of each element in
a reflectarray-based RIS is comparable to the wavelength, e.g.
g, and individually act as a diffuse scatterer.

B. Metasurface-based Implementation

A more sophisticated implementation of an RIS might
be done using metasurfaces [8]. A metasurface is the two-
dimensional planar form of metamaterials, which are man-
made synthetic materials with electromagnetic properties not
found in naturally occurring materials. They were originally
conceived for applications in the optical domain to allow
cheap and robust planar optical components replacing more
expensive custom-made lenses.

A metasurface is comprised of a large number of closely
spaced deeply subwavelength resonating structures called pix-
els or meta-atoms [8]. Both individual meta-atoms and the
space between adjacent meta-atoms are much smaller than
the wavelength in size. The very small size of these closely-
packed atoms and their large number offer a vast number of
degrees of freedom in manipulating the incident electromag-
netic waves. In particular, by deliberately designing its meta-
atoms, a metasurface can impose arbitrary quasi-continuous
[9] amplitude/phase profiles on the incident wave-fronts and
exercise fine-grained control over the scattered electric field.

Earlier metasurfaces designs have been based on static
preset meta-atoms designs that cannot be modified after fab-
rication, which is good enough for making custom lenses



for optical applications. However, later designs rely on semi-
conductor components, which can be reconfigured in real-
time to change the underlying meta-atom structure and hence
the electromagnetic behavior of the metasurface [6]. This
reconfigurability is achieved by integrating components that
can be tuned either electrically, mechanically or even ther-
mally. Electrically tunable metasurfaces are especially attrac-
tive since they can be cheaply manufactured using well-
understood semiconductor technologies, and can be tuned fast
enough to adapt to the time-varying wireless channel. For
instance, by incorporating varactor diodes or liquid crystals
within the meta-atoms. This dynamic tunability is paramount
in wireless applications to allow adapting to the changing
channel realization.

A metasurface-based RIS is comprised of several tiles,
where each tile is an individually reconfigurable metasurface
whose dimensions are much larger than the wavelength. In
a sense, each individual element in a metasurface-based RIS
has functionality akin to a reflectarray on its own right. In
particular, you can consider each tile in a reconfigurable
metasurface as the limit of a reflectarray as both the antenna
size and antenna spacing diminish and the applied ampli-
tude/phase profile become approximately continuous along
the surface. This allows a large degree of flexibility in ma-
nipulating the incident wave-front. For example, each tile
can reflect the incident wave-front in a different direction.
However, the majority of empirical works in the literature
[7]1, [10]-[13] employ reflectarray-based RIS. Even with the
simpler reflectarray-based implementation, impressive results
have been reported. In theory, the increased flexibility associ-
ated with the metasurface-based RIS leads to even better re-
sults; however, only real-world experimentation will tell if the
increased sophistication would lead to practical performance
gains.

III. CHANNEL MODEL

In this section, we discuss how to incorporate the existence
of an RIS in the propagation environment into the channel
model. Accurate channel models are essential for the analytical
study of RIS-assisted communications as well as simulations.
This is paramount in the evaluation of the utility of the
RIS, especially as it compares to other technologies, such
as relaying. The implementation method of the RIS, whether
its reflectarrays or metasurfaces, may play a role in deciding
which modeling technique is more appropriate. We present
two modeling techniques used in the literature and discuss
their underlying assumptions and rationale.

Consider a scenario where an M-antenna transmitter com-
municates with an N-antenna receiver and an L-element RIS
exists in the environment. Assuming a narrowband flat-fading
scenario, the received signal can be written as

¥ = VGa Honx + /G, Hgisx +n,

=Hegx +n,

6]

where x is the transmitted vector, n is the white Gaussian
noise vector at the N receiver’s antennas. Hc,, represents
the uncontrollable channel between the transmitter and the

receiver, excluding the effects of the RIS, and Hgs repre-
sents the controllable channel between the transmitter and the
receiver through the RIS. v/G4 and VG, represent the large-
scale gain associated with Hep,, and Hgys, respectively. Finally,
Het := VG4 Heny + VG, Hgis represents the overall effective
RIS-augmented channel seen by the transceivers.

It is worth discussing how the effective channel in RIS-
assisted communications differs from the effective channel
in traditional precoded multi-antenna systems. In traditional
precoded systems, the equivalent channel is given by the
product Heg = Hep P, where P is the applied precoder. While
in RIS-assisted communications, the RIS effect is additive,
cf. (1). Furthermore, elements of a traditional precoder can
take any value satisfying some constraints, e.g. power, while
the additive term in RIS effective channel depends on the
propagation environment and is only partially controllable
via the RIS. Although this makes the RIS optimization task
more challenging in general, the additive effect of the RIS
is more potent than the mixing and steering effects of the
traditional multiplicative precoders [14], giving the system
designer more control over the effective channel. Next, we
present two techniques to model the channel through the RIS,
Hgis.

A. Dyadic Backscatter Channel Model

The first technique models the RIS at the scatterer level and
assumes each element in the RIS is a regular omnidirectional
antenna subject to the effects of fading and uses the so-called
dyadic backscatter channel [15] to model the channel through
the RIS. Using this model, the channel through the RIS, Hgys,
can be written as

Hris = FQG, (2)

where F is the N X L channel from the RIS to the receiver,
G is the L X M channel from the transmitter to the RIS. The
L x L matrix, Q, represents the interaction of the RIS with
the transmitted waveform. Assuming no coupling between the
RIS elements, the interaction matrix can be written as

Q = diag (ﬁleigl,ﬂzeiez, . ,,BLei@L), 3)

where B8; € [0,1] and 6; € [0,27) and can be controlled by
changing the complex antenna load similar to backscatter tags
[16]. Note that the phase shifts can either be continuous [10],
or discrete [5], [17] based on implementation, e.g., varactors
vs. switched loads.

From (2), for any assumed statistical distribution for the
entries of G and F, the overall channel distribution will be
given by their product distribution. In general, this kind of
cascaded fading is known to have more detrimental effects on
performance compared to regular fading. However, increasing
the number of backscattering elements, L, does improve the
fading characteristics [15]. More importantly, it is probably
not an adequate model for the metasurface-based RIS, where
each element is not a typical antenna but rather a planar surface
with dimensions much larger the wavelength. Hence, typical
statistical characterization of the received signal envelope by
an antenna, i.e. fading, may not be appropriate.
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(a) Large-scale path loss of diffusely scattered electromagnetic
waves.

Fig. 3. Implementation effects on large-scale pathloss.

B. Spatial Scattering Channel Model

Now, we move to the second channel modeling technique,
which avoids some of the limitations of the cascaded dyadic
backscatter model presented above, and better reflects the
propagation mechanisms through a metasurface-based RIS.
Assuming each element in the RIS is much larger than the
wavelength, we can model each element as a reflector in
the environment creating a distinct propagation path. By this
characterization, we can use a parametric spatial model [18]
to write the channel through the RIS as

L
Hgis = Za’l’ ge agr (Or.c. 9r.0) A (Or.c. d7.0), (D)
=

where @, is a complex scalar representing the £-th path gain
excluding the effects of the RIS element, g, is a complex
scalar representing the controllable effect of the {-th RIS ele-
ment, and ag and ar represent the array steering vectors at the
receiver and the transmitter, respectively, with 6 representing
the azimuth angle and ¢ representing the elevation angle.

In general, the amplitude/phase parameter g, will be con-
trollable by the RIS, regardless of its implementation technol-
ogy. Furthermore, a metasurface-based RIS element may also
control the angle of the reflection, and hence the angles of
arrival at the receiver, 6g, and ¢gr ¢, which will change the
receiving array response accordingly. However, changing the
reflection angles requires optimizing the entire phase gradient
applied by the metasurfaces. In essence, this formulation rep-
resents the RIS as a cluster of reflectors whose complex gains,
and maybe incidence angles, are controllable. Clustered spatial
models are known to be highly accurate and are commonly
used in wireless standards [19]. Note that the parameter g,
is deterministic based on the current configuration of the RIS
while the parameters @, can be stochastic to model the fading
resulting from scattering around the receiver [4], [18]. By this
formulation, statistical characterization of small-scale fading
at the receiver is possible without forcing the assumption of
cascaded fading.

dg, drn
N/
I

(b) Large-scale path loss of reflected electromagnetic waves.

C. Large-scale Path Loss

Another important issue related to channel modeling is
how to model the large scale propagation path loss from a
transmitter to a receiver through the RIS. Accurate modeling
of the path loss through the RIS is critical in assessing the
performance of RIS-assisted communication links, especially
as compared to other techniques [20]. It is also one possible
differentiating aspect between reflectarray and metasurface-
based RIS.

Consider the effect of one RIS element as shown in Fig. 3.
In the case of a reflectarray-based implementation, each el-
ement is a regular antenna whose dimension is typically in
the order of %, while in the case of a metasurface-based
RIS, each element is a metasurface tile whose dimensions are
orders of magnitudes larger than the wavelength. Physical size
plays an important role in how objects interact with incident
electromagnetic waves [21]. Smooth objects much larger than
the wavelength, e.g., buildings and walls, specularly reflect the
majority of the incident wave, while objects with dimensions
comparable to the wavelength diffusely scatter the incident
wave in all directions. This has been observed for a long time
in field measurements [22] and is used in site-specific ray-
tracing simulations which are known to provide highly accu-
rate results [23]. Furthermore, at millimeter waves frequencies,
the size of objects that can act as reflectors becomes smaller
[24].

In the case of the reflectarray-based RIS, the element acts as
a diffuse scatterer. In particular, it only receives a point on the
incident wavefront and then diffusely scatter it in all directions
around the element resulting in further power loss toward the
receiver. On the other hand, in the case of a sufficiently large
metasurface-based RIS, each element acts as a reflector. It
receives a section of the incident wavefront and redirects it
according to a programmable reflection angle. There is no
further spreading of the wavefront at the metasurface tile. For
this kind of reflection, the reflection angle does not follow
Snell’s law, i.e., does not equal the incidence angle. It is
usually referred to as anomalous reflection [25].



Hence, in the case of the metasurface-based RIS, the path
loss through the RIS element will be proportional to the overall
distance [21], [23], dg + dy4, i.€.,

1
(dsr + drd)n ’

where n is the path loss exponent, e.g. 2 in free space, while
in the case of the reflectarray-based RIS, the path loss will be
proportional to the product of the distances, dg and dq, i.e.,

1
(dsr X drd)n ’

It is evident that the difference in path loss between the two
cases can be immense.

Before we conclude this section, it is worth mentioning that
path loss scaling through the RIS has been a subject of debate
in recent literature [26]-[28]. In particular, the assumption
that a metasurface acts approximately as a specular reflector
is only valid under specific conditions related to physical
size of the RIS and distances to communication endpoints,
ie., dy and dyg. In particular, the RIS physical size has
to be large enough relative to the distances, dy and dyq,
such that the communication endpoints are within the near
field of the RIS. In this case, it is valid to assume that the
average received power through the RIS scales with the sum
of the distances to the RIS as predicted by (5). This has
been analyzed theoretically in [26], [27], [29] and observed
in empirical measurements conducted in [27]. In envisioned
RIS deployments [1], where an RIS covers large sections of
buildings’ facades outdoors and walls indoors, it is safe to
assume that the transceivers of interest would be in the near-
field of the RIS [30], especially in dense networks. For a
concrete example, consider an RIS with physical dimensions
of 1.5m x 1.5m deployed on the facade of a building and a
transmitted signal at 28 GHz. The near-field of the RIS extends
up to 27[’2 meters away, where D is largest dimension of the
RIS and A the wavelength. Hence, transceivers within 420m
of the RIS are within its near-field and path loss through the
RIS is well approximated by (5) [27].
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IV. RIS-ASSISTED OPTIMIZATION

The presence of RISs in the propagation environment
provides the system designer with vast abilities to alter the
wireless channel realization to achieve different objectives in
various scenarios. In this section, we provide a brief overview
of the state of the art and discuss some of the aspects that
differentiate RIS optimization from precoding for traditional
MIMO arrays.

A. State-of-the-Art Review

Previous works have shown the potential of RISs in point-
to-point channels [7], [13], [31]-[42], downlink broadcast
channels [43]-[52], uplink multiple access channels [53]-
[56], and even device-to-device interference channels [10],
[11]. In point-to-point, e.g., single-user, scenarios where the
receiver has a single antenna, the problem of optimizing
the RIS configuration simplifies considerably. In this case, a

straightforward strategy is to use the RIS to maximize the
effective channel gain, which is equivalent to maximizing
the received power or minimizing the transmit power for a
given SNR constraint. If the relevant channels are known,
then co-phasing all paths is optimal, which can be solved
analytically or formulated as a semidefinite program (SDP)
[32], [33] in case of continuous phase shifts. If phase shifts
are discrete, quantizing the continuous solution is near-optimal
or a greedy iterative search can be utilized as indicated in
[37]. When the relevant channels are not known, the RIS
phase shifts can be optimized based on feedback from the
intended receiver, which can be implemented as a beam search
procedure [31], or similar algorithms [7]. Furthermore, when
limited channel information or receiver position information
can be obtained, they can be used to configure the RIS. In [57],
a small subset of the relevant channels is used to infer good
RIS configurations based on a deep neural network when the
channels are generated using realistic ray-tracing simulation.
In [35], a deep neural network was also used but relying on
position data rather than partial channel estimates.

In multi-user scenarios, the problem of configuring RIS
complicates considerably. In particular, maximizing the chan-
nel gains is no longer the only goal since interference must
be taken into account. Two heuristic algorithms have been
proposed to minimize transmit power under users’ SINR
constraints in a downlink broadcast scenario in [50], one
is based on alternating optimization similar to [32] and the
other maximizes the weighted channel gains of all users,
where weights are proportional to SINR constraints. In [43], a
heuristic algorithm based on majorization-minimization (MM)
is used to maximize the sum achievable rate under user
rate constraints, when a zero-forcing precoder is applied
to cancel all inter-user interference. The same approach is
generalized to accommodate energy efficiency maximization
in [44]. Motivated by the fact that Transmitter-RIS-Receiver
link resembles a hybrid beamforming scenario, where the
transmitter applies precoding in the digital domain and the
RIS applies further analog beamforming using only phase
shifts, a hybrid beamforming framework has been proposed
in [52] to maximize the achievable sum-rate in multi-user
downlink setting. Weighted sum-rate maximization has been
tackled recently in [45], where efficient suboptimal solutions
are found based on fractional programming and alternating
direction method of multipliers (ADMM). A deep reinforce-
ment learning (DRL) framework to jointly optimize transmitter
precoding and RIS phase shifts has been developed in [51] and
found to achieve comparable performance to the alternating
optimization techniques proposed earlier in the literature.

B. Limited Channel State Information

In general, the ability to optimize the RIS configuration is
limited by available information about the relevant channels.
Without at least partial knowledge about the underlying prop-
agation environment, the RIS cannot be used effectively to
improve the system performance. Most recent works on the op-
timization of RIS parameters have assumed relevant channels
are available as side-information, e.g., [32], [37], and focused



on devising algorithms to configure the RIS given channel
knowledge. The rationale for this assumption is usually to
explore the upper bounds of what can be achieved in practical
systems which would have to rely on imperfect estimates
of the channels. However, different from traditional wireless
systems where channel acquisition is a straightforward matter
and could be accounted for by penalizing the achievable rates
to account for pilot overhead and SNR degradation from
imperfect channel estimation, RIS-assisted wireless systems
would encounter more difficulties given the passive nature
of the RIS and the massive number of channel parameters
to be estimated. Hence, it should be noted that the gains
reported for these schemes principally relies on the ability
to estimate the channels between the RIS elements and the
communication endpoints. Such channel estimation may prove
to be tremendously difficult in practice.

The majority of published work on RIS assume a
reflectarray-based implementation, where each element is an
antenna terminated by a configurable load. As such, RIS
elements are neither regular wireless transmitters nor receivers.
They do not possess the capability to send pilots or even
process pilots to estimate the channel. Adding a receive chain
for each element in the RIS is prohibitive. A large number
of receive chains, one for each element, would consume a
formidable amount of power, and severely limits the attractive-
ness of RIS assisted communications. Without receive chains,
the RIS would not be able to process pilots sent from the two
communicating ends to estimate the channel. Moreover, the
effect of a single RIS element on the received signal is minus-
cule; hence, turning the RIS element individually on and off
to measure their effects on the received signal is impractical.
Next, we present two approaches from the literature to tackle
the problem of optimizing the RIS configuration with limited
channel information.

The first approach is to forgo channel estimation altogether;
instead, the optimization of the RIS can be based on feedback
from the receiver. In [31], a three-way beam-searching proto-
col has been designed to jointly optimize the beam-direction of
an IEEE 802.11ad access point and an RIS towards a common
receiver. This can be done using a predefined codebook of
beam-directions; however, the size of the codebook will be
proportional to the number of elements. If there are a large
number of RIS elements, training may take a long time [58].
This can be a problem in a dynamic environment where the
channel coherence time is limited. Nevertheless, relying on
feedback from the receiver is a promising solution and the
majority of empirically oriented studies have built prototype
systems that rely on receiver feedback to guide the optimiza-
tion of the RIS configuration without explicit knowledge of
the channels involved. In [13], the received signal strength
indicator (RSSI) is used to judge the current configuration
of the RIS and a simple greedy algorithm is devised to
sequentially adjust the phase shifts of the reflectarray element-
by-element without requiring any additional signaling. In [7],
RSSI has been also leveraged to guide the optimization of the
RIS; however, a simpler two-state phase shifter has been used
and a more robust optimization algorithm has been devised to
avoid measuring the effect of a single element, which might

be very hard in practical scenarios.

The other approach is to equip a small subset of the RIS
elements with low-power active receivers that are capable of
processing pilots and estimating the relevant channels. Hence,
the transmitter and the receiver can send pilots to help the
RIS acquire partial information about the channel. Note that
the directly estimated channels constitute a tiny subset of
the elements of the RIS and do not provide enough accurate
information on their own to facilitate beamforming or other
channel manipulations. However, by leveraging tools from
compressed sensing and machine learning, the limited avail-
able information can be used to compute sufficiently accurate
estimates of the channels at all elements, or directly use the
partial channel information to infer good RIS configurations.
Encouraging results in this direction have been reported in
[57], where it has been showed that only 1% of the RIS
elements need to be active in practical propagation scenarios
to support a sufficiently accurate prediction of the channels at
the remaining elements. This can be attributed to the fact that
the channels at all elements result from the interactions of a
limited number of scatterers and reflectors in the environment
and this limited number of receivers can be regarded as sensors
providing descriptors of the environment that carry sufficient
information to guide the configuration of the RIS. Note that
this technique is somewhat related to [35], where the small
number of “environment desicriptors” can be thought of as
providing a spatial fingerprint indicating the position of the
user.

The discussion above highlighted the problem of acquiring
phase information to optimize the state of the RIS. Indeed,
in all currently available prototypes and testbeds [7], [10],
[11], [13], [31], [59], receiver-side measurements, e.g. signal
strength or received power, is used to guide the configuration
of the RIS. In these cases there is a single user and the problem
of optimizing the RIS state is more akin to analog beam
training. In a sense, the RIS can be thought of as a large beam-
former disjoint from the transmitter. One attractive aspect of
some of these techniques is that they require no modifications
to the used wireless standard. In particular, the RIS training
process piggybacks on normal data-carrying transmissions and
gradually improves the quality of the received signal without
requiring dedicated training signaling. Finally, it is worth
noting that these simple proof-of-concept testbeds have used
traditional antennas to implement a reflectarray-based RIS
and only optimized the phase shifts; it remains to be seen if
using metasurfaces to implement the RIS would lead to higher
performance gains in real life.

Before we conclude the discussion of channel state in-
formation, we would like to point out that the presence of
the RIS has no effect on the channel estimation procedure
between the transmitter and the receiver in the environment.
In particular, for any configuration of the RIS, the transmitter
and the receiver can estimate the channel between them
regularly as if the RIS does not exist. To elaborate, it is
straightforward to estimate the overall channel, Heg, cf. (1);
however, estimating the channels between the RIS and the two
link ends individually or isolating the effect of the RIS is much
more challenging [60].



C. Optimization Objectives

Most recent works on RIS optimization focuses on tra-
ditional scenarios similar to those adopted for the study
of optimal precoders and receivers for traditional MIMO
arrays. However, the presence of the RIS in the middle of
propagation environment provides a unique opportunity to
alter the effective channels, cf. (1), in ways not possible by
traditional MIMO arrays at the communication end-points.
Hence, it is possible to pursue optimization objectives that
are simply unattainable in the traditional systems. For exam-
ple, as we mentioned earlier in the introduction, millimeter-
wave channels are spatially-sparse; in many cases, only one
viable propagation path exists which limits the possibility of
supporting spatial multiplexing or multi-user MIMO. Most
gains in current millimeter-wave systems, e.g. 802.11ad, come
from the huge channel bandwidths afforded in these systems.
However, given the additive nature of the effects of the RIS,
multiple RISs can be deployed across the environment to
provide multiple viable propagation paths to increase the rank
of the channel and facilitate spatial multiplexing.

Even under the benign assumption of rich scattering un-
derlining the canonical Rayleigh channel model at typical
ultra high frequencies (UHF), i.e., 300 MHz to 3 GHz, ill-
conditioned channel realizations, even if full rank, are com-
mon, which again limits the spatial multiplexing capability of
the channel and decrease the performance of MIMO detectors.
The RIS can be used to keep the effective channel well
conditioned, which reduces noise enhancement and greatly
improves the performance of simple linear MIMO receivers.
Preliminary empirical results in this direction was reported
in in [12]. Another example of these unique RIS optimization
objectives was studied in [61], where it has been demonstrated
that an RIS can be used to mitigate the effects of Doppler
spread and multipath fading. In particular, the effective channel
can be made more static over time.

Another scenario where an RIS could be immensely useful
is in interference channels. In this case, the RIS can be used
to facilitate channel sharing by multiple communicating pairs.
Assume several single antenna transmitter are to communicate
with corresponding single antenna receiver and there an RIS
in the middle of the propagation environment. The overall
effective channel can be written in the form introduced in
Section III, where the diagonal terms represent the desired
channel and all off-diagonal terms represent interference.
The RIS can be configured such that this effective matrix
is diagonal allowing spectrum sharing without interference.
Empirical results in this direction were reported in [10], [11],
but so far there are no theoretical results have been reported
on the subject.

In general, multiple RISs judiciously deployed in the en-
vironment give the system operator vast abilities to engineer
the propagation environment to satisfy different requirements.
Many optimization objectives beyond what is possible using
traditional MIMO arrays at the transceivers can be pursued.
The presence of the RIS in the middle of the propagation
environment can impose many structures on the effective
channels depending on the communication scenario. The RIS

can operate in multiple modes to satisfy diverse objectives. It
can be used as a large analog beamformer to focus power
to a single antenna receiver, to enhance the channel rank
and condition number to facilitate spatial multiplexing to a
multi antenna receiver or several single antenna users. It can
also be used to diagonalize an interference channel to allow
spectrum sharing, or even increase the channel coherence time
by mitigating the Doppler spread.

The complexity of optimizing the RIS configuration is
evident even for a single RIS aiding a single user transmission
especially given the difficulty of acquiring accurate channel
information. Multi-user multi-RIS scenarios will certainly be
less tractable. This complexity makes machine learning a
legitimate avenue for further investigation. Sparse environment
sensors can be deployed to monitor the propagation environ-
ment and provide information to a centralized controller. This
information can be in terms of partial channel coefficients [57]
or in terms of user positions [35]. Of course, any change
in the configuration of the RIS will change the propagation
environment and could be sensed and reported back to the
controller. This interaction with the environment makes the
problem well suited for reinforcement learning techniques.
However, the wireless channel is highly dynamic, any move-
ment of the transceivers or even objects in the environment will
affect the channel. Hence, any learning techniques will have
to operate within the coherence time of the channel and adapt
as the channel varies. The vast potential of RIS in shaping the
radio environment will be limited only by the ability to find
good configurations efficiently within the channel coherence
interval.

V. NUMERICAL RESULTS

In this section, we provide numerical results to demonstrate
the power of an RIS in shaping a MIMO channel to improve
performance while at the same time simplifying precoding at
the transmitter and equalization at the receiver. This aspect
of the RIS power received little attention in the literature
[12]. We consider a simple reflectarray-based RIS and show
that by merely adjusting the phase shifts at the RIS, we
could effectively orthogonalize the MIMO channel between
the transmitter and the receiver and achieve a near-unity
condition number. This greatly simplifies the processing at the
transmitter and the receiver, shifting the complexity to the RIS
controller optimization instead.

We compare the RIS-assisted channel to the canonical
Rayleigh fading channel. To focus on the potential gains
arising from the improved eigen structure of the effective
channel matrix, we normalize the relevant channels so that the
average channel gain is the same regardless of RIS assistance.
In particular, we look at the distribution of the condition
number, k = % of the channel. The condition number
and singular values of a MIMO channel are key properties that
characterize the spatial multiplexing capability of the channel.
It is well known that for a given channel gain, maximum
capacity is achieved when all singular values are equal, which
only happens when the channel is orthogonal. Hence, a near-
unity condition number, «, implies higher capacity. Moreover,
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Fig. 4. The effect of the RIS on the distribution of the channel condition
number, k. Results taken from 10* channel realizations.

an orthogonal channel matrix with equal singular values re-
duces complexity significantly. For example, uniform power
allocation would be optimal, and there is no need to adapt
modulation and coding per each spatial stream individually.

One way to achieve these desirable properties is optimize
the RIS configuration to maximize the so called spectral
entropy of the overall channel, Heg, c.f. (1). The spectral
entropy [62], [63] of an M X N matrix X, denoted by SE (X),
is given by

g (o]
SE (X) = —Z mln(m) 7

where o7 is the i-th largest singular value of X. Hence, we
can write our optimization problem as

maximize SE (Heg)
0 (8)

subjectto —-m<#6; <m.

Note that the maximum achievable objective value of (8)
is known to be In(min (M, N)), which only occurs when
the channel is orthogonal and can be used to terminate the
optimization procedure early. Nevertheless, (8) is not a convex
problem. In general, nonconvex problems are NP-Hard and
sub-optimal heuristics are necessary to reach good solutions
in a reasonable time.

We have applied gradient-based interior-point optimization
methods to solve (8). Although not convex, the problem seems
to be highly amicable to gradient-based techniques. A local-
solution with optimal objective, i.e., SE = In (min (M, N)), is
typically reached within a few tens of steps regardless of the
initial point.

Consider an RIS-assisted 4 x 4 MIMO link where the RIS
possess 100 elements, i.e., M = N = 4 and L = 100. In
the simulations, QPSK modulation is used over all spatial
streams and we have assumed half of the received power came
through the RIS and the other half through other paths. This
represents a compromise between LOS and NLOS scenarios.
We also assume the phase shifts are continuous; however, a
limited number of discrete phase shifts are also adequate even
if the solution is obtained using continuous optimization then
discretized, especially for large RISs. This has been reported
in many works, e.g., [37], [49], and also proved analytically in
[17]. Fig. 4 shows the effect of RIS assistance on the channel
condition number, k. From the figure, a Rayleigh channel
without RIS-assistance is very likely to be ill-conditioned;
however, with RIS assistance, all channel realizations can be
optimized by the RIS to be well-conditioned. This implies that
all eigenmodes of the channel are equally good.

Next, we present the effect of optimizing the channel
properties on the error performance of the simplest MIMO
receiver, the zero-forcing (ZF) linear decoder. The ZF decoder
is given by

Wzr = (HiHer) ™ Hp, ©)

where (-)* denotes the Hermitian transpose. Note that in the
RIS-assisted case, Heq is unitary after optimization and the ZF
decoder is equivalent to the optimal ML decoder. Moreover, it
is equivalent to the even simpler matched filter receiver given
by Hi ;.

Fig. 5 shows the average symbol error rate over all four
spatial streams. From the figure, RIS assistance has a drastic
impact on the error performance of the ZF decoder since noise
enhancement is eliminated and ZF decoding is optimal when
the channel is orthogonalized. Furthermore, the performance
of the ZF decoder in the RIS-assisted channel is actually better
than the maximum likelihood decoder in the non-assisted
channel. This arises from the fact that in ill-conditioned chan-
nels, the weakest spatial stream corresponding to the weakest
eigenmode usually suffers from a very low SNR. This problem
is overcome in the RIS-assisted scenario since all eigenmodes
are equally strong for all channel realizations. Finally, note
that we have normalized the channels so that the average
channel gain is the same regardless of RIS assistance. In
practical scenarios, the RIS can furthermore cause an increase
in average channel gain and even higher performance gains
are possible.
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VI. FUTURE RESEARCH DIRECTIONS

In this section, we briefly introduce some potential ap-
plications of RIS in wireless networks and discuss potential
research directions.

Centralized Beamforming for IoT Devices: The Internet-
of-Things (IoT) is an important component in future wireless
networks. However, some IoT devices are constrained in
both size and energy consumption. Future 5G and beyond
cellular networks will operate in the millimeter-wave channels
where highly directional antenna gains are essential to achieve
reliable high-rate communications. Some IoT devices will be
too small in size to support the antenna arrays required to
achieve enough beamforming gain to establish a link with
a distant base-station. RISs can be used to supply these
devices with large beamforming gain, much larger than can
be afforded by them given their limited size. Note that both
the RIS and the base station will be fixed in place and
probably with limited surrounding scatterers, which simplifies
the beamforming optimization between the RIS and the base-
station.

Experimental Validation of Path Loss Scaling: Path
loss through the RIS will be an important factor in deter-
mining the practicality of RIS-assisted communications [64].
This is especially important since the RIS is passive and
only co-phasing gains are possible. Transparent relaying and
backscatter channels are known to suffer from aggravated
path loss due to additional spreading of the signal at the
relay node or backscatter tag. Traditionally, smooth surfaces
much larger than the wavelength are modeled as reflectors
[21], [23], which gives metasurface-based RIS a huge advan-
tage over reflectarray-based RIS. However, this still needs to
be validated experimentally. Measurements for 0.351-spaced
reflectarray-based RIS were reported in [27]; however, it is
still not clear whether the tighter packing of scatterers in
a metasurface-based RIS would improve on these results,
especially for the same overall physical size.

RF Sensing and Localization: Another promising direction
is RIS-assisted radio-frequency (RF) sensing and localization.
The large aperture size of the RIS and its ability to shape
the propagation environment can significantly enhance RF
sensing capabilities. The channel can be altered to provide
favorable conditions for RF sensing then monitored with high
accuracy. Encouraging results have been reported in [65] with
possible applications in energy-efficient surveillance, assisted
living, and remote health monitoring. However, the problem
of optimizing the configurations of RIS to enhance RF-sensing
remains to be studied.

VII. CONCLUSION

Research in RIS-assisted wireless communications is still in
its infancy; many practical aspects are not well understood and
still need to be thoroughly investigated. However, the potential
for this new technology is immense. The idea of being able to
change the propagation environment is not only conceptually
interesting but also highly beneficial in a variety of scenarios.
In this article, we have discussed two candidate implementa-
tions for the RIS based on reflectarrays or metasurfaces. We
elaborated on channel modeling and how it can be affected
by the RIS implementation in terms of channel distribution
and large-scale path loss. Furthermore, we presented some of
the challenges that need to be addressed in the optimization
of RIS-assisted networks. Optimization of the RIS will have
to be performed given limited information about the channel
and many optimization objectives can be pursued making
the problem very complex. In the end, practical optimization
techniques are essential to reap the system performance gains
resulting from the ability to shape the wireless propagation.
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