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Abstract—We consider an uplink multi-user scenario and
investigate the use of reconfigurable intelligent surfaces (RIS)
to optimize spatial multiplexing performance when a linear
receiver is used. We study two different formulations of the
problem, namely maximizing the effective rank and maximizing
the minimum singular value of the RIS-augmented channel. We
employ gradient-based optimization to solve the two problems
and compare the solutions in terms of the sum rate achievable
when a linear receiver is used. Our results show that the proposed
criteria can be used to optimize the RIS to obtain effective
channels with favorable properties and drastically improve per-
formance even when the propagation through the RIS contributes
a small fraction of the received power.

I. INTRODUCTION

Performance of wireless communication systems is ulti-
mately dictated by the wireless channel state, which is the
product of electromagnetic wave propagation in the envi-
ronment, and outside the control of the system designer.
Transceivers merely track the channel state, and then adapt
their modulation and coding to better utilize it for a given
coherence interval. Reconfigurable intelligent surfaces (RIS)
present a paradigm shift in this aspect [1]–[4], as it allows the
system designer to also alter the wireless channel realization
to increase capacity or impose favorable structures to facilitate
simpler communication techniques.

RISs have been used to alter the channel to achieve various
objectives in many scenarios [5]–[14]. Downlink multi-user
scenarios has been studied in [5]–[9], where the use of an
RIS resulted in impressive gains both in terms of energy
efficiency [5], [6] and achievable rates [8], [9]. In [6], [7],
it has been demonstrated that an RIS-assisted MIMO system
can achieve the same rate performance as massive MIMO
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systems while significantly reducing the number of required
radio frequency (RF) chains. Gains in the rate performance
have also been reported for wide-band OFDM systems [10],
[11]. Furthermore, it has been shown in [12], using both
simulations and experimental prototypes, that an RIS can be
exploited to greatly improve RF sensing for human posture
recognition.

In this letter, we investigate the use of an RIS to improve the
performance in a multi-user uplink scenario when a linear re-
ceiver is used. Although suboptimal in general, linear receivers
are becoming increasingly attractive as larger and larger
constellations are being incorporated in wireless standards.
For example, the current generation of wireless local area
network (WLAN) modems supports 1024-QAM constellations
with 4096-QAM constellations being proposed for the next
generation [15], which renders maximum-likelihood (ML)
receivers prohibitive. We present two optimization criteria for
the RIS phase shifts to improve the post-processing signal-
to-interference-plus-noise ratio (SINR) of a linear receiver,
and ensure fairness between users. Different from alternating
optimization techniques in the literature, e.g., [6], we propose
to optimize features of the effective channel matrix directly.
In particular, maximizing the so-called effective rank [16]
and maximizing the minimum singular value of the RIS-
augmented channel. We derive the gradient of the two criteria
with respect to the RIS phase shifts and employ gradient-based
optimization techniques to obtain good RIS configurations. We
compare the configurations obtained in terms of rate achiev-
able by a linear receiver and examine the characteristics of the
resulting RIS-augmented channels. Finally, we investigate the
effects of changing system parameters such as the number of
RIS elements and the fraction of power received through the
RIS. Our results show that by optimizing the RIS phase shifts
using the proposed criteria, the rate achievable by a linear
receiver is drastically increased even when the propagation
through the RIS contributes a small fraction of the received
power.

II. SYSTEM MODEL

We consider an uplink multi-user scenario with one base-
station having M antennas and K single-antenna users,
where M ≥ K. The link is assisted by a single L-element
reflectarray-based RIS [3]. The baseband received signal at
the base station can be written as

y =

K∑
k=1

hkxk + n, (1)
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Fig. 1. System Model.

where hk is the M × 1 channel vector from the k-th user
to the base-station including the effects of the RIS, xk is the
transmitted scalar symbol by the k-th user, and n is the M×1
noise vector at the base-station whose elements are distributed
as i.i.d. CN

(
0, σ2

n

)
. The received signal can be written in

matrix form as

y = Heffx+ n, (2)

where Heff = [h1h2 . . .hK ] is the overall effective channel
including the effects of the RIS and x = [x1, x2, . . . , xK ].

By changing the RIS configuration, the effective channel
between the base station and the users, Heff can be altered.
Assuming a reflectarray-based RIS [3], we can write the RIS-
assisted channel as

Heff =
√
1− α D+

√
α√
L
FQG, (3)

where D denote the M×K direct, i.e., not controllable by the
RIS, channel between the users and the base-station, α ∈ [0, 1]
denote the fraction of power received through the RIS1, F
denotes the M × L channel between the base station and the
RIS, G denotes the L × K channel between the RIS and
the K users, and Q denote the RIS controllable interaction
matrix. We assume the elements of all channels’ matrices are
distributed as i.i.d. CN (0, 1), i.e., Rayleigh fading2.

Assuming no coupling between the RIS antenna elements,
the interaction matrix can be written as

Q = diag (ψ1, ψ2, . . . , ψL) , (4)

where ψi represents the reflection coefficient of the i-th
element. We assume |ψi| = 1 ∀i since the RIS does not
possess any amplification capabilities and can only phase shift
the incident signals.

1The value of the parameter α will depend on various parameters such
as the deployment scenario, and the physical size of the RIS. Note that the
normalization by 1√

L
is necessary for α to represent the fraction of power

received through the RIS.
2It is worth mentioning that obtaining channel knowledge at the passive RIS

array is a challenging problem, but outside the scope of the current work.

III. OPTIMIZATION CRITERIA FOR RIS-ASSISTED SPATIAL
MULTIPLEXING

In this section, we present two different criteria to choose
the RIS configuration to optimize spatial multiplexing perfor-
mance when a linear receiver is used. In general, when a linear
equalizer, W, is used, the resulting post-equalization SINR of
the k-th user is given by

γk =
|w∗khk|

2∑
j 6=k
|w∗khj |

2
+Kσ2

n ‖wk‖2
, (5)

where w∗k is the k-th row of W. The optimal linear receiver
that maximizes this ratio is the minimum mean square error
(MMSE) receiver given by

WMMSE =
(
H∗effHeff + σ2

nI
)−1

H∗eff, (6)

where (·)∗ denotes the Hermitian transpose and I denotes the
identity matrix of suitable dimensions. The MMSE receiver
strikes a balance between minimizing the interference terms,
i.e.,

∑
j 6=k |w∗khj |

2, and maximizing the signal term |w∗khk|
2.

Aside from choosing the receiver structure, now with the
advent of RIS, we also have the capability to change the
channel realization. A natural question to ask is for which
channel realization is the linear MMSE receiver equivalent
to the optimal ML receiver? the answer is: when the channel
is orthogonal, i.e., H∗effHeff is diagonal, and no stream carries
any information about other streams. Also note that in this case
power control simplifies considerably, as it becomes optimal
for each user to just transmit at full power. Furthermore, in
this case, the interference terms

∑
j 6=k |w∗khj |

2 vanish and the
MMSE receiver reduces to the matched filter WMF = H∗eff.

3

The problem of finding the phase shifts that orthogonalize
the effective channel, Heff, can be written in the form of the
feasibility problem

find ψ

subject to h∗ihj = 0, i 6= j,
(7)

where ψ = [ψ1, ψ2, . . . , ψL]. This problem is equivalent to
solving a system of multi-variate quadratics, which is known to
be NP-complete [17]. Nevertheless, we present two optimiza-
tion criteria that could be used to approximately orthogonalize
the effective channel.4

A. Effective Rank Criterion (ER-C)

Definition 1. The effective rank [16], [18] of a complex-
valued M ×K matrix X is given by

ξ (X) = exp

[
−
∑
i

λi
‖X‖∗

ln

(
λi
‖X‖∗

)]
, (8)

where λi is the i-th largest singular value of X and ‖X‖∗ =∑
i

λi is the nuclear norm of X.

3The matched filter receiver could be practically attractive in envisioned
massive connectivity scenario where the high dimensionality of the channel
matrix makes its inversion prohibitive.

4Note that this formulation is motivated by simplicity of detection, power
control and fairness between users but is inherently sub-optimal from a sum-
rate stand-point.
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The term in the exponent is known as the spectral entropy
and the density defined by

{
λi
‖X‖∗

}
∀i

is known as the spectral
density.

The effective rank takes values in the range [0,min (M,K)],
where the higher its value the more equal the singular values,
and thus the more orthogonal the matrix columns are. A
matrix with maximum effective rank, i.e., min (M,K), has
completely orthogonal columns and all its singular values are
equal. Hence, a proper optimization objective to achieve our
goal is to maximize the effective rank of the effective channel
matrix, i.e.,

maximize
ψ`

ξ (Heff)

subject to |ψ`| = 1 ∀` = 1, 2, . . . , L.
(9)

Note that the effective rank is not a function of the singular
values directly but their normalized form λi

‖X‖∗
.

We can write the interaction matrix directly in terms of
the phase shifts [5] as Q = diag

(
eiθ1 , eiθ2 , . . . , eiθL

)
to

reformulate (9) as the unconstrained problem

maximize
θ

ξ (Heff) (10)

where θ = [θ1, θ2, . . . , θL]. Although not convex, this problem
can be efficiently solved using gradient-based techniques to
find a locally optimal solution. To facilitate gradient-based
optimization, we derive the gradient of the effective rank of
an RIS-augmented channel with respect to the phase shifts.

Using the chain rule, we can write the `-th element of the
gradient as

∂ξ

∂θ`
=
[
∂λ1

∂θ`
∂λ2

∂θ`
· · · ∂λK

∂θ`

]


∂ξ
∂λ1

∂ξ
∂λ2

...

∂ξ
∂λK


. (11)

The partial derivative of the effective rank with respect to the
k-th singular value can be found by directly differentiating (8)
to be

∂ξ

∂λk
= −

K∑
j=1

Cj,k

‖Heff‖2∗

(
1 + ln

λj
‖Heff‖∗

)
ξ (Heff) , (12)

where

Cj,k =


∑
i6=k

λi if j = k,

−λj if j 6= k.
(13)

Proposition 1. Let Heff = U∗SV denote the singular value
decomposition (SVD) of Heff. Then, the partial derivative of
the k-th singular value with respect to the `-th phase shift can
be found to be

∂λk
∂θ`

= u∗k
∂Heff

∂θ`
vk, (14)

where vk and uk are the k-th columns of U and V, respec-
tively.

Proof. The k-th singular value is given by

λk = u∗k Heff vk, (15)

Then taking the partial derivative with respect to θ` yields

∂λk
∂θ`

= <{∂u
∗
k

∂θl
Heff vk + u∗k

∂Heff

∂θ`
vk + u∗kHeff

∂v∗k
∂θl
},

∂λk
∂θ`

(a)
= <{λk

∂u∗k
∂θl

uk + u∗k
∂Heff

∂θ`
vk + λkv

∗
k

∂vk
∂θl
}

∂λk
∂θ`

(b)
= <{u∗k

∂Heff

∂θ`
vk},

(16)

where (a) follows from the fact that Heffvk = λkuk and
H∗effuk = λkvk, while (b) follows from the fact that u∗kuk =
v∗kvk = 1.

The (m, k)-th entry of effective channel matrix Heff can be
written as

[Heff]m,k =
√
1− α [D]m,k +

√
α√
L

L∑
`=1

eiθ` [F]m,` [G]`,k ,

(17)

whose partial derivative with respect to the `-th phase shift is
given by [

∂Heff

∂θ`

]
m,k

=

√
α√
L
ei(θ`+

π
2 ) [F]m,` [G]`,k . (18)

Hence, the partial derivative of the entire effective channel
matrix with respect to the `-th phase shift can be written as

∂Heff

∂θ`
=

√
α√
L
ei(θ`+

π
2 ) [F]:,` ⊗ [G]`,: , (19)

where ⊗ denote the Kronecker product operation. Finally, by
substituting (12) and (18) back into (11), we can compute the
gradient.

B. Max-Min Singular Value Criterion (MSV-C)

The minimum singular value of the channel matrix is
paramount in determining the performance of linear receivers
[19]. Both capacity and error rate metrics are directly related
to the minimum singular value which motivates our interest
in this optimization criterion. Our numerical results show
that, for an adequate size of the RIS and path loss values,
maximizing the minimum singular value leads to the effective
channel being completely orthogonalized. Solutions obtained
by maximizing the minimum singular value also tend to
have higher beamforming gains which lead to much better
performance as compared to solutions obtained by maximizing
the effective rank.

Following the same arguments as in the last section, we can
formulate the optimization as an unconstrained maximization
problem with respect to the phase shifts as

maximize
θ

λmin (Heff) , (20)

and the elements of the gradient of the minimum singular
value with respect to the RIS phase shifts were already derived
in (14). Note that (20), like (10), is non-convex.
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Fig. 2. Comparison of the achievable rate when the phase shifts are optimized
according to MSV-C and ER-C. α = 0.5 and L = 100 for all curves. The
achievable rate of the canonical Rayleigh channel is also shown for the ML
and MMSE receivers as baselines.

Equipped with closed-form expressions for the gradient,
both (10) and (20) can be solved efficiently using any gradient-
based optimization algorithm to find a locally optimal solution.
In our experiments, we have found the effective rank problem
(10), to be especially amicable to gradient-based optimization.
Even the simplest steepest-descent algorithms can used to
obtain an optimal solution, i.e., ξ = min (M,K). While, the
max-min singular value problem, (20), was found to benefit
from incorporating curvature information using Quasi-Newton
methods. In all cases, our numerical results presented in
the next section show that the proposed problems are easily
solvable using efficient numerical techniques and result in
drastic improvements in the performance.

IV. NUMERICAL RESULTS

Equipped with the gradient expressions derived in the
last section, we employ the Quasi-Newton Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm with cubic interpolation
line search [20] to solve both (10) and (20). Then, we compare
both solutions in terms of the average achievable sum rate
attained. The achievable sum-rate with a linear receiver for a
given channel realization can be computed from

R =

K∑
k=1

log2 (1 + γk), (21)

where γk’s are as defined in (5). In all simulated cases, we
let M = K = 4 and indicate the number of RIS elements, L,
and the power fraction, α on the figures. Achievable rates are
averaged over 106 independent channel realizations.

Fig. 2 shows the attained average achievable rates for the
RIS-assisted channels for both criteria and also for the case
of a non-assisted canonical Rayleigh channel as a baseline.
For all curves in the figure, α = 0.5 and L = 100. From the
figure, both optimization criteria lead to drastic improvements
in the achievable rate over the canonical Rayleigh channel.

Fig. 3. The effect of the number of RIS elements, L, on the achievable rate
when the phase shifts are optimized according to MSV-C and ER-C. α = 0.5
for all curves. The achievable rate of the canonical Rayleigh channel is also
shown for the ML and MMSE receivers as baselines.

Actually, the rate achieved with a linear MMSE receiver in the
RIS-assisted channel—for both optimization criteria—exceeds
even the ML receiver in a non-assisted channel. Moreover, the
MF receiver performance is identical to the optimal MMSE
receiver performance for both criteria which means that the
effective RIS-assisted channel matrix is completely orthogonal
in this case. This shows that the asymptotic orthogonality of
massive MIMO can be achieved by a passive RIS without
requiring a large number of active RF chains. As expected,
the MSV-C holds a significant advantage over the ER-C in
terms of the achievable rate. Although both criteria lead to an
orthogonal effective channel, the MSV-C incentivizes larger
singular values, while the ER-C only cares about orthogonality,
i.e., the singular values being equal.

Remark. Note that the channel matrix is normalized such that
the RIS assistance does not lead to increasing the average
power at the receiver. All the achieved gains come from
co-phasing at the RIS, i.e., beamforming, and the improved
channel eigenstructure. To highlight this point, Fig. 2 also
shows the achievable rate when the phase shifts are chosen ran-
domly. In this case, all gains vanish and RIS-assisted channel
holds no advantage over the canonical Rayleigh channel which
underscores the importance of optimizing the phase shifts. Our
rationale for this normalization is to highlight the gains arising
from the configurablility of the RIS rather than the introduction
of another large scatterer into the environment since the RIS
will probably be installed into an already existing structure,
e.g., building facade or wall.

Now, we investigate the effects of the number of elements,
L, and how much of the received power came through
backscattering off the RIS, i.e., α. Fig. 3 shows the effect of
the number of elements on the achievable rates for the RIS-
assisted channels for both criteria and also for the case of a
non-assisted canonical Rayleigh channel as a baseline. For all
curves in the figure, α = 0.5. From the figure, increasing the
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Fig. 4. The effects of the power fraction, α, on the achievable rate when the
phase shifts are optimized according to MSV-C and ER-C. L = 100 for all
curves. The achievable rate of the canonical Rayleigh channel is also shown
for the ML and MMSE receivers as baselines.

number of RIS elements leads to significant improvements in
the achievable rate when the MSV-C is used to configure the
phase shifts. However, when the ER-C is used, the effect is
negligible. This stems from the fact the ER-C is channel gain
agnostic and only cares about eliminating interference; hence,
it does not leverage the increased beamforming capability
that comes with more elements. It is worth mentioning that
increasing the number of RIS elements entails increasing the
physical size of the RIS since we are assuming the elements
of F and G remain independent.

Finally, Fig. 4 shows the effect of the power fraction, α,
on the achievable rates for the RIS-assisted channels for both
criteria and also for the case of a non-assisted canonical
Rayleigh channel as a baseline. For all curves in the figure,
L = 100. As expected, if more power is received through the
RIS, it has a stronger influence on the effective channel and
the achievable rate increases for both criteria. Surprisingly,
the RIS can have a potent effect on the effective channel even
when propagation through it contributes little received power.
Even for power fraction factors as low as 1

32 , the RIS can
still influence the effective channel and drastically improve
the achievable rate by up to 10 bits per channel use.

V. CONCLUSION

We have presented two optimization criteria for the RIS
phase shifts to improve the post-processing SINR of a linear
receiver. In particular, maximizing the so-called effective rank
and maximizing the minimum singular value of the RIS-
augmented channel. We have derived the gradients of the two
criteria with respect to the RIS phase shifts and employed
gradient-based optimization techniques to obtain good RIS
configurations. We have compared the configurations obtained
in terms of rate achievable by a linear receiver and examined
the characteristics of the resulting RIS-augmented channels.
Finally, we investigated the effects of changing system pa-
rameters such as the number of RIS elements and the fraction

of power received through the RIS. Our results showed that
by optimizing the RIS phase shifts using the proposed criteria,
the rate achievable by a linear receiver is drastically increased
even when the propagation through the RIS contributes a small
fraction of the received power.
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