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Abstract—Unmanned Aerial Vehicles (UAVs) are emerging as
key components in next-generation wireless networks, offering
adaptable and scalable solutions for dynamic communication en-
vironments. However, their effective deployment requires careful
optimization of both spatial positioning and resource allocation.
This paper addresses the joint problem of three-dimensional
placement and transmit power configuration for Flying Base
Stations (FBSs) operating in the presence of Macro Base Stations
(MBSs). The problem is formulated as a Mixed-Integer Nonlinear
Programming (MINLP) task, a class known for its computational
intractability. To tackle this complexity, we propose a genetic
algorithm-based framework that simultaneously optimizes spatial
coordinates, power levels, and activation status for single and
multiple FBS scenarios. Unlike conventional approaches that
decouple these dimensions or limit their focus to isolated de-
ployments, our methodology integrates spatial positioning, power
allocation, multi-FBS coordination, and interference management
with MBSs into a unified optimization framework. Simulation
results demonstrate that the proposed algorithm achieves near-
optimal user coverage and significantly faster convergence com-
pared to a bounded exhaustive search baseline, confirming its
effectiveness and scalability in complex deployments involving
multiple FBSs and MBSs.

Index Terms—UAV, genetic algorithm, optimization, cellular
networks, MINLP.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have emerged as key
enablers in modern communication networks, enhancing ex-
isting paradigms and facilitating the development of novel
protocols. Their ability to function as flying base stations
(FBSs) provides a flexible and scalable solution for extending
network coverage, particularly in remote, disaster-affected, or
high-demand areas where traditional infrastructure is limited
or infeasible. The increasing commercialization and techno-
logical advancements in UAVs have positioned them as key
components in next-generation wireless networks, offering im-
proved adaptability, enhanced coverage, and efficient spectrum
utilization [1]. Their dynamic repositioning capabilities allow
for real-time adjustments in response to fluctuating network
demands, making them particularly advantageous in scenarios
such as emergency response, large-scale public events, and
temporary high-traffic zones [2].

However, despite their potential, integrating FBSs into com-
munication networks presents several challenges. Key con-
straints include managing bandwidth, transmission power, and
flight range, all of which significantly impact the performance
and efficiency of FBS deployments [2], [3]. Moreover, the

inherent mobility of FBSs introduces complexities in channel
modeling, as variations in altitude, trajectory, and environmen-
tal conditions can affect signal propagation and reliability. One
of the fundamental challenges in FBS deployment is deter-
mining the optimal positioning relative to users to ensure the
best possible connectivity and coverage. Effective placement
must account for multiple factors, including line-of-sight (LoS)
probability, non-line-of-sight (NLoS) conditions, interference
mitigation, and overall network stability. The optimization
of these variables is inherently multi-variate and generally
very complex, requiring a careful balance between coverage
maximization, latency minimization, power efficiency, and
spectral resource management. Furthermore, these challenges
are magnified in deployments involving multiple FBSs op-
erating concurrently in the presence of macro base stations
(MBSs), where mutual interference and coordination become
critical.

To address these challenges, this paper investigates the
joint optimization of FBS placement and resource allocation,
contributing the following:

• The incorporation of the high-fidelity wireless channel
simulator, QuaDRiGa [4], within a comprehensive opti-
mization framework.

• A Genetic Algorithm (GA)-based methodology address-
ing a rigorously formulated and fully coupled optimiza-
tion problem encompassing continuous three-dimensional
FBS positioning, continuous power allocation, and dis-
crete power state control, scalable to scenarios with
multiple FBSs and MBSs.

• A performance comparison conducted against a localized
exhaustive search strategy to benchmark optimization
efficacy for both single and multi-FBS deployments.

By jointly optimizing the positioning of FBSs across all
three spatial dimensions in conjunction with resource allo-
cation, and explicitly extending the methodology to multiple
FBSs operating alongside macro base stations, this study in-
troduces a holistic and adaptable framework for enhancing the
performance of UAV-assisted communication networks. The
proposed methodology leverages GAs to effectively navigate
the inherent complexity of this multidimensional optimization
problem, illustrating the potential of evolutionary computation
in addressing the dynamic and nonlinear characteristics of
such systems. The remainder of this paper is structured as
follows. Section II reviews related literature on UAV-enabled



wireless networks and optimization methods. Section III in-
troduces the system model and key assumptions. Section IV
formalizes the optimization problem. Section V describes the
proposed genetic algorithm-based solution. Section VI outlines
the simulation setup, and Section VII presents and analyzes the
results. Finally, Section VIII concludes the paper and suggests
directions for future research.

II. RELATED WORK

Several studies have tackled this complex problem from
a variety of perspectives. Some have relied on traditional
numerical optimization techniques and commercial solvers,
while others have adopted heuristic algorithms or machine
learning approaches in an effort to find effective solutions.
Despite the diversity in methodologies, many of these works
share a common foundational setup, particularly in terms of
system modeling and performance metrics. In this section, we
examine the different approaches in detail, discussing both
their points of divergence and convergence.

A. Traditional Approaches

Traditional analytical approaches often reformulate the FBS
placement problem to improve tractability. In [5], a probabilis-
tic RF propagation model decomposes user–FBS interaction
into LoS and NLoS components, with parameters set by envi-
ronmental factors such as building density. This enables path
loss derivation and reveals a convex relationship between FBS
altitude and cell radius, supporting optimal altitude selection.

Extending this, [6] formulates the problem in 3D as a
Mixed-Integer Nonlinear Program (MINLP), introducing addi-
tional constraints that effectively reduce dimensionality to 2D.
The solution employs MOSEK solvers [7] and uses the same
propagation model and SINR-based QoS enforcement as [5].
A comparable framework in [8] maintains physical channel
modeling and SINR-based QoS, but solves horizontal place-
ment first (via second-order cone programming in MATLAB),
followed by altitude optimization.

Although these works enhance tractability via reformulation
and dimensionality reduction, such simplifications often rely
on assumptions that may not reflect real deployments. Con-
straints and environmental abstractions, while mathematically
convenient, can compromise modeling fidelity and overlook
key trade-offs and uncertainties in practical FBS operations.

B. Alternative Methods and Heuristics

Recent works have explored advanced heuristic and
learning-based approaches, though many retain similar physi-
cal channel modeling assumptions. For instance, [9] employs
GAs for 3D FBS placement with users randomly distributed
in a bounded area. Horizontal placement is optimized by GA
variants, while altitude is handled analytically. The channel
models used closely follow those in [5], [6].

A shift toward reinforcement learning is seen in [10], where
a Q-learning framework is applied for FBS 3D positioning un-
der diverse QoS requirements. Positional initialization uses k-
means clustering, especially for scenarios lacking user location

infrastructure, such as post-disaster settings. The probabilistic
LoS/NLoS channel model, consistent with earlier studies,
allows a balance of tractability and realism and supports rapid
experimentation, without any notable additions to physical
modeling.

While [9] and [10] address comparable optimization prob-
lems, they do so via distinct machine learning paradigms
through multi-population GAs and reinforcement learning,
respectively highlighting the adaptability of learning-based
methods. In [9], FBS height and horizontal positioning are
decoupled. [11] similarly uses GAs but assumes a fixed FBS
altitude and addresses multiple FBS placements, maintaining
these simplifications throughout.

Clustering-based techniques are further illustrated in [12],
which applies DBSCAN to find user clusters, then uses KNN-
derived centroids to reposition FBSs, though altitude is not
optimized and is left for future work.

Overall, while most prior studies decompose the problem
for tractability, often preconditioning variables or reducing
dimensionality, our approach jointly optimizes all relevant
parameters, leveraging a high-fidelity channel simulator and
avoiding restrictive assumptions.

III. SYSTEM AND CHANNEL MODEL

The area being analyzed is an area with U users distributed
within it as illustrated in Fig. 1. The distribution of users will
be detailed in a subsequent section. Throughout the simulation,
multiple FBSs, with the number of FBSs denoted by the term
NFBS, are allowed to move freely within the 3D coordinate
space, each described by its (xdn

, ydn
, zdn

) location vector,
where n = 1, . . . , NFBS. Similarly, the MBS is positioned at
fixed coordinates (xm, ym, zm). The location of each user i is
denoted by (xi, yi).

Each user ui may receive signals from all FBSs and the
MBS present in the environment. For every user, the received
power from each base station (whether FBS or MBS) is
computed using QuaDRiGa’s power map functionality, which
produces the received signal strength at each spatial point for
a given emitter’s configuration. Thus, at any user location, the
set of received powers {Pi,b} is obtained, where b indexes all
base stations.

Given the set of received powers, we evaluate the SINR
for every user, accounting for all transmitting base stations.
Formally, let:

• Pui,b denote the received signal power at user ui from
base station b (including both FBSs and MBSs),

• B denote the set of all base stations in the scenario (both
FBSs and MBSs),

• N0 denote the noise power (in mW),
• SINRui

denote the SINR at user ui.
Then, the SINR at user ui served by base station b is

computed as:

SINRui
=

Pui,b∑
j∈B, j ̸=b

Pui,j +N0



Fig. 1. A representation of the MBS and FBS layout

where the denominator includes the aggregate interference
from all other active base stations as well as the noise floor.
The user is ultimately associated with the base station pro-
viding the highest SINR, subject to a minimum connectivity
threshold.

Unlike most works that rely on simplified probabilistic
LoS/NLoS models, this study uses QuaDRiGa [4] v2.8.1,
a geometry-based stochastic channel simulator, to provide
a realistic and detailed wireless propagation environment.
QuaDRiGa models 3D multi-cell scenarios with statistical
ray tracing, representing environmental effects like buildings
and foliage through randomly distributed scattering clusters. It
captures key propagation phenomena such as multipath com-
ponents, mobility-induced drifting, and transitions between
environments, and supports dual mobility and satellite-to-
ground links, making it highly suitable for dynamic UAV
scenarios. Integrating QuaDRiGa enables the evaluation of
UAV placement using accurate channel metrics, including
path loss and interference, within a realistic simulation setup
comprising an MBS and accompanying FBSs.

IV. PROBLEM FORMULATION

We consider the joint optimization of multiple FBSs, where
the objective is to maximize user connectivity, defined by
having a specified minimum SINR to achieve a connection, in
a bounded area while minimizing interference and power con-
sumption. Each FBS is characterized by its three-dimensional
coordinates (xdn

, ydn
, zdn

), continuous transmit power pdn
,

and activation status variable sn ∈ {0, 1}, where sn = 1
indicates that the nth FBS is active and sn = 0 means it
is turned off, for n = 1, . . . , NFBS.

Let U denote the set of users uniformly distributed in the
region of interest. Each user’s connectivity is determined by
their received SINR, which depends on the locations, transmit
powers, and activation statuses of all FBSs, as well as the
fixed MBS, together with the environmental propagation char-
acteristics discussed earlier. A user is considered connected
if their SINR from any base station (FBS or MBS) exceeds
a predefined threshold, i.e., SINRui

≥ γ. The association is

made to the base station (FBS or MBS) providing the highest
SINR above the threshold.

The optimization objective is to maximize the number of
connected users Uconn. We express the normalized objective
as:

max
{xdn ,ydn ,zdn ,pdn ,sn} , n=1,...,NFBS

Uconn

U
(1)

subject to, for each FBS n:

xdn
∈ [xmin

d , xmax
d ] (2)

ydn
∈ [ymin

d , ymax
d ] (3)

zdn ∈ [zmin
d , zmax

d ] (4)

pdn ∈ [pmin
d , pmax

d ] (5)

sn ∈ {0, 1} (6)

Here, xmin
d and xmax

d represent the bounds of the search
space for the x-coordinate (similarly for y and z), and pmin

d

and pmax
d represent the allowable lower and upper bounds for

the FBSs’ transmission powers. This formulation enables the
simultaneous optimization of spatial placement, power config-
uration, and activation status for all FBSs, while accounting
for their mutual interference and interaction with the MBS.
The above formulation is inherently:

• Non-convex, due to the SINR function’s dependence on
distance-based path-loss, complex interference coupling,
and the integer nature of the activation variable,

• NP-hard, as it involves combinatorial choices of loca-
tions, power levels, and activation under interference,
making it intractable for traditional solvers.

Given these characteristics, the problem is formulated as
a MINLP. Due to the limitations of conventional convex
optimization techniques in this context, we adopt an evolution-
ary approach based on genetic algorithms, which efficiently
explores the high-dimensional solution space and yields near-
optimal FBS configurations. All variables, including positions,
transmit powers, and binary activation states, are jointly pro-
cessed and optimized.

V. GA-BASED OPTIMIZATION FRAMEWORK

The optimization is performed using a GA, where each
individual encodes all FBSs as a flat vector:

Individual =
[
xd1 , yd1 , zd1 , pd1 , sd1 , . . . ,

xdNFBS
, ydNFBS

, zdNFBS
, pdNFBS

, sdNFBS

]
Each FBS is defined by its 3D coordinates, transmit power,
and binary activation status, allowing for joint optimization
of all parameters and straightforward scalability to multiple
FBSs.

Population Initialization: Initial solutions are sampled
uniformly within the feasible parameter bounds. For multi-
FBS scenarios, a Matérn hard-core process [13] enforces a
minimum separation between FBSs; remaining parameters are
independently sampled, and activation status is initialized via
Bernoulli sampling.



Crossover and Mutation: Crossover uses a blend operator
with crossover probability pcr for continuous variables (po-
sition and power), applying a convex combination of parent
genes, while binary activation is crossed via a uniform XOR
rule. Mutation adds Gaussian noise to continuous variables
and randomly flips the activation bit with mutation probability
pmu, with all values clamped to feasible ranges.

Selection and Fitness: Parent selection employs tournament
selection (size 3), balancing pressure and diversity. Fitness is
the ratio of the number of users connected Uconn above the
SINR threshold and the total users in the space U , encouraging
solutions that maximize user connectivity.

Scalability and Runtime: The modular code structure,
available at [14], facilitates straightforward extension to sce-
narios involving multiple FBSs, and can similarly accom-
modate additional MBSs as needed. All associated attributes
for these entities can be adjusted flexibly according to the
requirements of each simulation setup.

From a runtime perspective, evolutionary algorithms typi-
cally exhibit computational requirements that depend on both
the simulation context and the underlying problem struc-
ture [15]. Abstracting away the nonlinearities of the physi-
cal model, the algorithm’s complexity scales approximately
linearly with the number of variables (e.g., FBSs) under
standard assumptions for problem complexity and search space
dimensionality [16]. For a fixed number of genetic iterations,
the overall runtime remains polynomial.

VI. SIMULATION SETUP

All simulations are conducted using a MacBook Pro
equipped with an Apple M4 Pro processor, 12 CPU cores, and
24 GB of RAM. Parallel computation is utilized to accelerate
the evaluation of both the optimization and exhaustive search
loops. Propagation modeling is handled using the QuaDRiGa
framework with a spatial computation resolution of 1 meter,
and all receiver terminals are assumed to be located at a height
of 1.5 m above ground level to emulate typical mobile user
devices.

The simulation environment consists of 100 users uniformly
distributed within a two-dimensional area bounded by [0, 1500]
meters in both the x and y directions. A single MBS is
placed at a fixed location (300, 350, 25) meters, transmitting
at 20 W [17], and its interference is accounted for during
all SINR evaluations. The FBS power bounds are defined
in Table I [17]. The antenna configuration is defined using
QuaDRiGa’s modeling tools. All transmitters (MBS and FBSs)
are modeled as single-element 3GPP 3D antennas, operating
at a center frequency of 2 GHz. The FBS antennas are rotated
−90◦ about the y-axis to align their main lobes horizontally,
consistent with aerial deployment. The receiver is modeled as
an omnidirectional antenna, emulating a typical mobile device.
This antenna configuration is consistently used across both the
optimization and exhaustive search simulations.

For generality, the simulation framework is designed to
support multiple FBSs, each with independently configurable

TABLE I
SIMULATION PARAMETERS

Parameter Value / Range Symbol
User Area Size [1500, 1500] m –
Number of Users 100 U

Receiver Height 1.5 m –
SINR Threshold 5 dB γ

MBS Location (300, 350, 25) m xm, ym, zm
MBS Power 20 W pm
FBS Horizontal Bounds [0, 1500] m (xd, yd)

min, (xd, yd)
max

FBS Altitude Bounds [20, 150] m zmin
d , zmax

d

FBS Power Bounds [7, 10.5] W pmin
d , pmax

d

Number of FBSs Variable NFBS

FBS Activation {0, 1} sn
QuaDRiGa Resolution 1 m –
QuaDRiGa Frequency 2 GHz –
GA mutation prob. 0.7 pmu

GA Generations 10 –
GA crossover prob. 0.3 pcr
Crossover Alpha 0.5 α

GA Configuration (single/multi)
GA Population Size 10, 100 –
GA mutation scale 0.199, 0.17 σ

spatial coordinates, transmission power, and activation status.
The optimization thus targets the joint configuration of all FBS
locations (xdn

, ydn
, zdn

), transmit powers pdn
, and activation

statuses sn for n = 1, . . . , NFBS. The primary performance
metric is the number of connected users exceeding a specified
SINR threshold of 5 dB [18], regardless of whether connec-
tivity is provided by the MBS or any FBS. Unless otherwise
stated, the simulations in this work are performed with a single
MBS and a variable number of FBSs to evaluate both single
and multi-FBS scenarios. The general simulation parameters
are summarized in Table I.

VII. SIMULATION AND RESULTS

A. Exhaustive Search Baseline

For benchmarking, we perform an exhaustive search over
a discretized 3D grid of FBS positions, spanning x, y ∈
[300, 1500] m in 10 m increments, and altitudes z ∈
{20, 30, 40, 60, 70} m. At each candidate position, the number
of users connected above the SINR threshold is calculated with
the FBS transmitting at pmax

d and sd = 1.
The maximum observed connectivity is 74 users at 40 m

altitude. However, this approach is highly computationally
intensive, requiring hours per altitude slice even with paral-
lelization. Table II summarizes the results. The discretization
may miss better configurations between grid points, and the
search becomes intractable for more than one FBS due to
exponential scaling, as illustrated in Fig. 2.

Optimal connectivity regions are generally attained by plac-
ing the FBS away from strong MBS coverage regions, since
proximity to the MBS increases interference and reduces user
association, as shown in Fig. 3. These findings serve as a base-
line for assessing the GA’s performance and for understanding
the impact of FBS parameters on network connectivity.



Fig. 2. A plot showing the scaling effect of the exhaustive search considering
NFBS = 2 with the difference being several orders of magnitude.

TABLE II
COMPARISON OF EXHAUSTIVE SEARCH AND GA RESULTS

Metric Exh. Single GA Multi GA

Users Connected 74 69 72
Power (W) 10.5 8.95 9.2, 10.1
Time 2.4 hrs/height 20 sec/gen 0.1 hrs/gen

B. Single-FBS GA Results

The GA efficiently solves the joint placement and power
optimization over the continuous search space by iteratively
refining candidate solutions. Rapid convergence is observed,
with individuals typically adopting active status (s = 1) and
relocating away from MBS-dominated regions within three
generations. Altitude and transmit power stabilize at values
that jointly maximize connectivity and minimize interference.

The evolution of the fittest individuals is shown in Fig. 3.
The GA achieves near-optimal connectivity (69 users, ∼ 6.7%
below the exhaustive maximum) with orders-of-magnitude
faster computation than exhaustive search (see Table II).
Furthermore, the GA identifies solutions at lower altitudes
and with reduced transmit power, demonstrating power-aware
optimization as illustrated in Fig. 4a.

C. Multi-FBS GA Extension

The GA framework is extended to multi-FBS scenarios,
where exhaustive search is impractical. The GA jointly op-
timizes all FBS positions, altitudes, transmit powers, and
activation statuses. Results show notable gains in connectivity
and coverage relative to the single-FBS case, as multiple FBSs
enable more flexible and efficient user service.

The GA autonomously distributes FBSs to minimize mutual
interference and avoid overlaps with MBS coverage, yielding
more uniform connectivity and, in some cases, lower overall
transmit power. Computation times remain practical, highlight-
ing the method’s scalability. Comparative results demonstrate
the added value of coordinated FBS operation in terms of both

Fig. 3. A 2D section showing the exhaustive planar performance at zd = 30
and maximal power, with the contour color map representing the obtained
number of connected users at each specified FBS placement point. The
overlaid trajectory traces the GA’s best solutions across generations.

connectivity and resource use. As depicted in Fig. 4b, FBSs
collaborate to jointly select optimal heights and powers, while
their spatial dynamics are visualized in Fig. 5. The results
collectively affirm that while exhaustive search provides a
valuable upper bound for single-FBS scenarios, it is the genetic
algorithm that offers practical scalability and adaptability to
more realistic, multi-FBS wireless network deployments. The
GA not only approaches the performance ceiling established
by exhaustive search in the single-FBS case, but also scales
seamlessly to optimize complex deployments involving multi-
ple flying base stations along with a macro base station. These
findings underscore the algorithm’s potential for adaptive
network planning in next-generation wireless systems.

VIII. CONCLUSION

We addressed the joint optimization of 3D placement and
power allocation for FBSs coexisting with an MBS, formu-
lating the task as a MINLP and employing the QuaDRiGa
channel simulator for realistic wireless environment modeling.
All optimization variables were considered jointly. A tailored
GA was proposed and benchmarked against exhaustive search.
Results show that the GA achieves near-optimal connectiv-
ity with dramatically lower computational cost, making it a
practical solution for efficient search space exploration. The
GA framework also scales efficiently to multi-FBS scenarios,
managing added dimensionality and interference. Overall, this
work demonstrates the effectiveness and scalability of evo-
lutionary algorithms for adaptive FBS deployment in next-
generation wireless networks.
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