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Abstract—In this paper, we consider the problem of Angle of
Departure (AoD) based channel feedback in Frequency Division
Duplex (FDD) massive Multiple-Input Multiple-Output (MIMO)
systems with multiple antennas at the users. We consider the
use of Zero-Forcing Block Diagonalization (BD) as the downlink
precoding scheme. We consider two different cases; one in which
the number of streams intended for a user equals the number of
antennas at that user and the other case in which the number of
streams is less than the number of user antennas. BD requires
the feedback of the subspace spanned by the channel matrix at
the user or a subspace of it in the case of having less number of
streams than the number of antennas at a specific user. Based on
our channel model, we propose a channel feedback scheme that
requires less feedback overhead compared to feeding back the
whole channel matrix. Then, we quantify the rate gap between the
rate of the system with perfect Channel State Information (CSI)
at the massive MIMO Basestation (BS) and our proposed channel
feedback scheme for a given number of feedback bits. Finally, we
design feedback codebooks based on optimal subspace packing
in the Grassmannian manifold. We show that our proposed codes
achieve performance that is very close to the performance of the
system with perfect CSI at the BS.

I. INTRODUCTION

Massive MIMO wireless communication systems have been
shown to introduce dramatic improvements in both spectral
and energy efficiency [1]. Channel feedback is a crucial part in
FDD massive MIMO systems to perform precoding and digital
beam-forming on the transmitted signals. In FDD systems,
channel reciprocity cannot be used to obtain the downlink CSI
at the BS. Therefore, channel feedback is necessary. However,
the challenge that massive MIMO systems face is that it has a
very large number of antennas and hence, the codebook size is
very large, and hence, the feedback overhead is overwhelming.

Many channel feedback schemes were proposed in order
to reduce the amount of feedback overhead as well as the
size of the codebook for massive MIMO systems. In [2], a
spatially common sparsity-based adaptive channel estimation
and feedback scheme for FDD massive MIMO systems was
proposed. In [3], a compressed channel feedback scheme for
correlated massive MIMO channels was proposed. The chan-
nels were quantized based on compressive sensing technique
in order to be fed back to the base station with low overhead. A
limited feedback scheme for massive MIMO systems based on
principal component analysis (PCA) was discussed in [4]. In
[5], an AoD-adaptive subspace codebook for channel feedback
was proposed. The paper utilized the idea that the angles of

departure vary much slower than the channel gains, which re-
sults in a massive reduction in the required feedback overhead.
This is because that the channel vector is constrained to be
in a lower dimensional subspace of the full M -dimensional
space (where M is the number of transmitting antennas at
the BS) during the angle coherence time. Exploiting this fact
can result in a significant reduction in the required feedback
overhead . However, the work in [5] did not consider the
case of equipping the users with multiple receive antennas.
In addition, the work in [5] has assumed random feedback
codebooks and no structured feedback codebooks design was
considered.

In this paper, we extend the massive MIMO model in [5],
by equipping each user with multiple receive antennas rather
than only a single antenna. We use the concept of AoD-
adaptive subspace codebook to reduce the amount of required
feedback overhead. We jointly feed back the CSI of the
multiple receiving antennas at each user. This joint feedback
results in a massive reduction of feedback bits compared
to feeding back the CSI of each receive antenna separately.
In order to achieve this, we use BD [6] as ourprecoding
scheme, which is a generalization of the zero-forcing channel
inversion technique. BD is a linear precoding scheme that
involves simultaneous transmissions of multiple data streams
to each user while cancelling the interference from other users.
Hence, BD only needs the channel subspace of each user’s
channel matrix at the BS, which requires fewer feedback bits
if compared to reporting the actual channel matrix. In addition,
we present a BD-based AoD-adaptive codebook design. A
structured quantization codebook design is proposed based
on subspace packing in Grassmannian manifolds. Finally,
we quantify the rate loss resulting from using the proposed
codebook. We prove that the required number of feedback bits
to achieve a constant rate gap, from the system with perfect
CSI at the BS, only increases linearly with the Signal to Noise
Ratio (SNR).

II. SYSTEM MODEL

A. Downlink Massive MIMO Channel Model

In this paper, we assume a Millimeter Wave (mmWave)
massive MIMO broadcast (downlink) system with a single BS
communicating with K multi-antenna users. The BS has M
transmitting antennas while the kth(∀k ∈ {1, 2, · · · ,K}) user
has Nk receiving antennas. We assume that the typical model



in massive MIMO systems is used. This model assumes that
the number of transmitting antennas is much higher than the
number of users (i.e., M >> K). We consider a narrowband
ray-based downlink channel model for the downlink channel
vectors Hk ∈ CNk×M at the kth user [5]

Hk = GkAk(θk,1, θk,2, · · · , θk,Pk). (1)

The matrix Ak(θk,1, θk,2, · · · , θk,Pk) ∈ CPk×M is defined as:

Ak(θk,1, θk,2, · · · , θk,Pk) =


a(θk,1)
a(θk,2)

...
a(θk,Pk)

 (2)

where Pk is the number of resolvable paths from the BS to the
kth user. The parameter θk,i(1 ≤ i ≤ Pk) represents the AoDs
of the ith path of the kth user. We assume that the transmitting
antennas at the BS form a Uniform Linear Array (ULA) as in
[7]. Hence, a(θk,i) ∈ CM×1 is a steering vector that represents
the antenna response of the ith propagation path of the kth user,
and it can be written as

a(θk,i) = [1, e−j2π
d
λ sin (θk,i), · · · , e−j2π dλ (M−1) sin (θk,i)],

(3)
where λ is the signal wavelength and d is the spacing between
every two successive antennas at the BS. From Eq. (1), we
can notice that the kth user’s channel vector for each antenna
is a linear combination of its Pk steering vectors scaled by
the complex paths’ gains of that antenna. Gk ∈ CNk×Pk is
a matrix whose rows contain the complex path gains of each
antenna at the kth user (i.e., the entry Gk(i, j) represents the
complex gain of the jth path of the ith antenna at user k). The
complex path gains in Gk are assumed to be Independently and
Identically Distributed (i.i.d.) circularly-symmetric complex
Gaussian random variables with zero mean and unit variance.

During the angle coherence time of θk,i, the channel vector
of each antenna of user k is only distributed in a Pk-
dimensional subspace, called as the channel subspace in this
paper, of the full M -dimensional space. We assume throughout
the paper that the channel subspace Ak, which is a function of
the AoDs, is known at both user k and the BS. The AoDs can
be estimated at the kth user using the standard Multiple Signal
Classification (MUSIC) algorithm [8], then they are fed back
to the BS once after every angle coherence time. Consequently,
the BS only needs to know the low dimensional path gains
matrix Gk ∈ CNk×Pk in order to generate the actual channel
matrix Hk. In this paper, we neglect the overhead coming from
reporting the AoDs to the BS because it is very low compared
to the overhead coming from reporting the path gains in Gk.

The BS sends mk streams to user k, where mk ≤ Nk. Let
uk ∈ Cmk×1 contains the mk data symbols to be transmitted
simultaneously to the kth user such that

uk = [uk,1uk,2 · · ·uk,mk ]T . (4)

Before transmitting the users’ data symbols over the chan-
nel, the kth user symbol vector is multiplied by the precoding
matrix Fk ∈ CM×mk . Thus, the overall transmitted vector

x ∈ CM×1, which contains all the data symbols intended for
all users, is given by:

x =

K∑
j=1

Fjuj (5)

and the received signal at the kth user can be written as:

yk = Hkx + nk = HkFkuk + Hk

K∑
j=1
j 6=k

Fjuj + nk, (6)

where nk ∈ CNk×1 is the circularly symmetric complex
Gaussian noise vector at the kth user with a zero vector mean
and identity covariance matrix.

The second term in Eq. (6) represents the summation of
the interference, from the signals intended to all other users
in the cell, at user k. The users’ precoding matrices, Fk’s,
are unitary matrices (i.e., FH

kFk = Imk), and in order to
adhere to the power constraint, we have E

[
‖uk‖2

]
= γ

K ,∀k ∈
{1, 2, · · · ,K}, where γ is the total transmit power at the BS.

B. Partial CSI Feedback
The training overhead to perform channel estimation at

the receiver side increases in massive MIMO systems as the
number of transmit antennas at the BS increases [1]. However,
there are many effective downlink channel estimation schemes
that address this problem with a highly reduced amount of
training overhead [2], [9], [10]. Consequently, we assume in
this paper that each user knows its downlink channel matrix.

The channel matrix Hk of each user is required at the BS
in order to perform precoding and power allocation. However,
we assume in this paper that the total power of each user is
uniformly allocated across its multiple data streams. Hence, in
order to perform BD, which will be discussed thoroughly in
Sec. III-A, it is only required to feed back the spatial direction
of each user’s effective channel. The spatial direction of the kth

user is defined as the subspace spanned by the rows of H̃k ∈
Cmk×M , where H̃k represents the subspace of the effective
channel of user k. In case of mk = Nk, the spatial direction
of the kth user is the subspace spanned by the rows of its
channel matrix itself Hk ∈ CNk×M . The quantization of the
spatial direction H̃k, say Ĥk ∈ Cmk×M , is chosen from the
codebook Ck = {Ck,1,Ck,2, · · · ,Ck,2B}, that consists of 2B

matrices in Cmk×M , where B is the number of feedback bits
for each user and the rows of Ck,i are orthonormal. The details
of the beamforming matrix design as well as the codebook
design are discussed in Sec. III and Sec. IV, respectively. The
kth user quantizes its spatial direction H̃k to a quantization
subspace Ĥk = Ck,Zk , where the index Zk is calculated such
that:

Zk = arg min
i∈[1,2B ]

d2(H̃k,Ck,i), (7)

where d(Hk,Ck,i) is the distance metric between the two
matrices Hk and Ck,i. In this paper, we adopt the chordal
distance as our distance metric [11], which is given by:

d(H̃k,Ck,i) =

√
sin2 θ1 + sin2 θ2 + · · ·+ sin2 θmk , (8)



where the θj’s are the principal angles between the two sub-
spaces spanned by the rows of the matrices Hk and Ck,i [11].
The principal angles only depend on the subspaces spanned
by the rows of the matrices. Hence, the rows of each matrix
Ck,i ∈ Ck are orthonormal (i.e., Ck,iCH

k,i = Imk∀ Ck,i ∈ Ck),
and each Ck,i represents a quantization subspace in the code-
book. The chordal distance can be calculated using an alternate
form of Eq. (8) as follows:

d(H̃k,Ck,i) =

[
Nk −

∥∥∥H̃kCH
k,i

∥∥∥2
F

]1/2
, (9)

where the values of this distance metric range between 0 and√
mk. Note that we do not feed back any channel magnitude

information to the BS.

III. DESIGN OF BD BASED BEAMFORMING MATRICES

In this section, we present the details of the block diagonal-
ization (BD) precoding scheme. Then, we analyze the per-user
data rates of the BD scheme.

A. Design of Users’ Beamforming Matrices

In this paper, we consider BD as our linear BS precoding
technique. BD is a zero-forcing technique which completely
nulls the interference at each user due to the signals transmitted
to all other users. Thus, BD can be thought of as a general-
ization of channel inversion in cases of multiple antennas per
user. Following the BD algorithm, each Fk is chosen under
the constraint of having HjFk = 0, ∀j 6= k. This leads to
obtaining an orthonormal basis for the null space of the matrix
formed by stacking all {Hj}j 6=k matrices. This procedure nulls
the interference terms in Eq. (6) at each user. BD is different
from the conventional Zero-Forcing (ZF) precoding, where
every complex data symbol to be transmitted to the nth antenna
(among the Nk antennas) of the kth user is precoded by a
vector which is orthogonal to all the rows of Hj , j 6= k, and
is orthogonal to all rows of Hk except the nth one. In other
words, conventional ZF forces every transmitted data symbol
to be received by only one antenna at the intended user. This
results in more restrictions in designing the BS precoders and
results in a degraded performance if compared to BD based
precoders design.

However, in practice, we cannot achieve zero interference
as the BS does not have perfect knowledge of {Hk}Kk=1. In
the case of limited feedback, BS has access to a quantized
version of the subspace spanned by the rows of each Hk,
namely Ĥk. We follow the strategy in [12], where the BS treats
the quantized subspaces Ĥ1, Ĥ2, · · · , ĤK as the true channel
subspaces while performing the BD procedure. In that case,
we denote the generated precoding matrices as F̂1, F̂2, · · · , F̂K
in order to distinguish them from those selected with perfect
channel knowledge at the BS.

We assume in this paper that the number of antennas of
the kth user, Nk, is smaller than the number of resolvable
paths Pk, (i.e., Nk < Pk). Thus, all antennas of user k
are independent from each other since they experience Pk
independent paths with independent path gains (i.e., entries of

Gk are independent). We consider two different cases when
designing the precoding matrices F̂k, ∀k ∈ {1, 2, · · · ,K} as
follows.

1) Case I: Nk = mk: In this case, it is assumed that the
number of antennas of the kth user, Nk, is equal to the number
of complex data symbols mk to be simultaneously transmitted
to it. Define Wk as

Wk =
[
Ĥ
T

1 · · · Ĥ
T

k−1Ĥ
T

k+1 · · · Ĥ
T

K

]T
, (10)

where Ĥk, k ∈ {1, 2, · · · ,K}, is the quantized feedback
version of the original spatial direction H̃k of the kth user.
The zero-interference constraint forces the precoding matrix
F̂k of the kth user to lie in the null space of Wk. The
channel subspace of the kth user Ak only depends on the
AoDs of the user which are assumed to be independent from
one user to another. Thus, we can conclude that the spatial
directions of different users Ĥk are linearly independent from
each other. Consequently, the rank of Wk of the kth user is
L̃k = rank(Wk) = NR − Nk, where NR is the aggregate
number of receive antennas (i.e., NR =

∑K
k=1Nk). Define

the Singular Value Decomposition (SVD) of Wk as

Wk = UkΣk

[
V(1)

k V(0)
k

]H
, (11)

where V(1)
k holds the first L̃k right singular vectors, while V(0)

k

have the remaining (M − L̃k) right singular vectors. Hence,
V(0)
k forms an orthonormal basis for the null space of Wk,

and therefore, its columns are candidates for the columns of
the kth user precoding matrix, F̂k.

The effective channel of the kth user is the product ĤkV(0)
k .

Due to nulling the interference of other users, this is now
equivalent to the single-user MIMO capacity maximization
problem and the best precoder is, thus, the right singular
vectors of that effective channel [13]. Let L̄k be the rank
of the product ĤkV(0)

k and it is upper bounded by L̄k ≤
min{Lk, L̃k}, where Lk is the rank of Ĥk. Thus, the SVD of
the effective channel of the kth user is given by:

ĤkV(0)
k = Qk

[
Λk 0
0 0

] [
R(1)
k R(0)

k

]H
, (12)

where Λk is L̄k × L̄k and the columns of R(1)
k are the first

L̄k singular vectors. Finally, the product V(0)
k R(1)

k forms an
orthonormal basis of dimension L̄k, and it represents the
precoding matrix that maximizes the capacity of the kth user
while achieving zero interference.

F̂k = V(0)
k R(1)

k . (13)

2) Case II: Nk > mk : In this case, it is assumed that
the number of antennas of the kth user, Nk, is larger than the
number of complex data symbols, mk, to be simultaneously
transmitted to that user. Adding more antennas at each receiver
enhances the diversity gain at each user. In addition, having
more antennas at the users than the number of data streams
means that we only feed back a smaller subspace of the right
singular vectors of the channel matrix Hk ∈ CNk×M of user



k. This, in turn, enhances the capacity of the system. Let the
SVD of the channel matrix Hk of the kth user be:

Hk = UkΣkVH
k , (14)

where Uk ∈ CNk×Nk and Vk ∈ CM×M are unitary matrices,
and Σk ∈ CNk×M is a rectangular matrix that has the singular
values on its diagonal. Let Vk,mk be a matrix that contains the
first mk columns of Vk. From Eq. (14), we can notice that each
row of Hk is a linear combination of the complex conjugate
of the first Nk columns of Vk. Thus, the subspace spanned
by the first Nk columns of Vk is equivalent to the subspace
spanned by the complex conjugate of the rows of the channel
matrix Hk ∈ CNk×M . Consequently, we can conclude that
the subspace spanned by the first Nk columns of Vk always
lies in the subspace spanned by the rows of A∗k ∈ CPk×M .
This is important since Ak is assumed to be already known
at the BS. Then, we can use a low dimensional codebook, to
be designed in Sec. IV, in order to quantize Vk,mk . It was
proved in [14] that the columns of Vk,mk are isotropically
distributed on the subspace they lie in. Hence, a Grassmannian
packing based codebook, to be presented in Sec. IV-B, can be
used to quantize Vk,mk . Let the quantized version of Vk,mk
be V̂k,mk ∈ CM×mk , and it is chosen from the codebook C
according to Eq. (7).

Now, following the conventional BD procedure, let Sk ∈
CM×(M−

∑K
i=1,i 6=kmi) represent the orthonormal basis of the

null space of Wk, where

Wk =
[
V̂1,m1

· · · V̂k−1,mk−1
V̂k+1,mk+1

· · · V̂K,mK
]H
. (15)

The effective channel of the kth user will be the product
V̂

H
k,mk

Sk. The SVD of this product is given by:

V̂
H
k,mk

Sk = QkΛk

[
R(1)

k R(0)
k

]H
, (16)

where R(1)
k represents the first mk right singular vectors.

Finally, the product SkR(1)
k form an orthonormal basis of

dimension mk, and it represents the precoding matrix F̂k ∈
CM×mk that maximizes the capacity of the kth user while
achieving zero interference. The precoding matrix F̂k is given
by

F̂k = SkR(1)
k . (17)

Hence, the received vector yk ∈ CNk×1 at user k becomes

yk = HkFkuk +

K∑
j=1,j 6=k

HkF̂juj + nk. (18)

The received vector yk, in Eq. (18), is finally left multiplied
by UH

k,mk
, where Uk,mk ∈ CNk×mk is the matrix that contains

the first mk columns of the matrix Uk given in Eq. (14).

B. The Per-User Rate

The BS can perform downlink precoding on the data vectors
uk ∈ Cmk×1 intended for each user based on the fed back
quantized spatial directions represented by Ĥk. As described
above, we consider the BD based linear precoding at the

BS to obtain the beamforming matrices for each user Fk.
The BD strategy involves linear precoding that eliminates the
interference at each user due to all other users as discussed in
Sec. III-A. Hence, the second term in Eq. (6), which represents
the interference at the kth user due to all other users, is
canceled in the case of perfect CSI at the BS (i.e., Ĥk ≡ H̃k).
Then, the per-user ergodic rate for case I is given by [6]:

RCSIT,I(γ) = E log2

∣∣∣∣Imk +
γ

Kmk
HkFkFH

kHH
k

∣∣∣∣. (19)

For case II, the total effective channel after left multiplying
Eq. (18) by UH

k,mk
is UH

k,mk
HkFk. Hence the per-user ergodic

rate for case II is given by:

RCSIT,II(γ) = E log2

∣∣∣∣Imk +
γ

Kmk
UH

k,mkHkFkFH
kHH

kUk,mk

∣∣∣∣,
(20)

where k is the user index, and a uniform power allocation
policy is adopted. The expectation is evaluated over the
distribution of the channel matrix, Hk.

In the case of limited feedback of B bits for each user, the
interference at the kth user due to all other users cannot be
completely eliminated because the quantized spatial direction
spanned by the rows of Ĥk is not exactly the same as the
original spatial direction spanned by the rows of H̃k. As a
result, this quantization leads to residual interference power,
and the per-user rate for case I is given by [12]:

RQUANT,I(γ) = E log2

∣∣∣∣∣∣Imk +
γ

Kmk

K∑
j=1

HkF̂jF̂
H
j HH

k

∣∣∣∣∣∣−
E log2

∣∣∣∣∣∣∣∣Imk +
γ

Kmk

K∑
j=1
j 6=k

HkF̂jF̂
H
j HH

k

∣∣∣∣∣∣∣∣. (21)

Similarly, the per-user rate for case II due to quantization is
given by:

RQUANT,II(γ) = E log2

∣∣∣∣∣∣Imk +
γ

Kmk

K∑
j=1

UH
k,mk

HkF̂j F̂
H
j HH

kUk,mk

∣∣∣∣∣∣−
E log2

∣∣∣∣∣∣∣∣Imk +
γ

Kmk

K∑
j=1
j 6=k

UH
k,mk

HkF̂j F̂
H
j HH

kUk,mk

∣∣∣∣∣∣∣∣,
(22)

where k is the user index, and the expectation is evaluated
over the distribution of the channel matrices, Hk ∀k ∈
{1, 2, · · · ,K}, and the corresponding quantized precoding
matrices, F̂j . The term HkF̂kF̂

H
kHH

k represents the useful signal

intended for user k and,
K∑

j=1,j 6=k
HkF̂jF̂

H
j HH

k represents the

muti-user interference at user k.

IV. AOD-ADAPTIVE SUBSPACE CODEBOOK

The path angles of departure of the kth user, θk,is, defined
in Eq. (1) depend on the obstacles that surround the BS. These
obstacles are expected to change their physical positions in a
much longer time than the channel coherence time. On the



other hand, for the path gains represented by Gk in Eq. (1),
one resolvable path is formed by a set of scatters around user
k, which consists of a number of unresolvable paths. Hence,
path gains, Gk’s, are expected to change much faster than path
AoDs, θk,i’s [5], [15]. However, the size of Gk is very low
compared to the original channel matrix Hk and here comes
the reuction in feedback overhead. During the angle coherence
time, the spatial direction of the kth user H̃k is isotropically
distributed in the channel subspace, which is spanned by the
rows of Ak(θk,1, θk,2, · · · , θk,Pk). As shown in Eq. (1), each
row of the channel matrix Hk is composed of Pk paths, where
Ak(θk,1, θk,2, · · · , θk,Pk) is completely determined by the path
AoDs. The reason for the uniform distribution of H̃k in the
row space of Ak is that the rows of Ak (steering vectors) are
asymptotically orthogonal to each other (i.e., AkAH

k ≈MIPk )
[5]. Additionally, the path gains in Gk are modeled as i.i.d.
circularly symmetric complex Gaussian random variables with
zero mean and unit variance, which causes the user’s spatial
direction to be uniformly distributed in its channel subspace
during the angle coherence time.

Due to limited scattering of mmWave, the number of paths
Pk is much smaller than the number of transmit antennas M at
the BS [16]. Therefore, the row space of Ak is only a subspace
of the full M -dimensional space. Thus, assuming that the BS
knows the AoDs, we can only quantize and feed back the path
gains matrix Gk ∈ CNk×Pk . Then, the quantization subspace
Ck,i of the proposed AoD-adaptive subspace codebook C =
{Ck,1,Ck,2, · · · ,Ck,2B} is formed by:

Ck,i =
1√
M

XiAk, (23)

where Xi ∈ Cmk×Pk is a matrix whose rows are orthonormal,
and its row space is isotropically distributed over the complex
Pk-dimensional space.

A. Random Subspace Quantization codebooks
In general, the design of optimal quantization codebooks is

a very hard problem, especially when the number of subspaces
to be separated is large. Hence, the performance in such cases
can be studied by averaging over random codebooks [17].
It is easier to analyze the performance of random codes in
this case, and this would provide us with some performance
bounds for structured codes. In our problem, a number of
2B subspaces, each having a dimension of mk, are picked
at random in a Pk-dimensional Euclidean space. The set
of all mk-dimensional subspaces in a Pk-dimensional space
represent a Grassmannian manifold, which is denoted by
GPk,mk . The 2B random subspaces, that form the random
quantization codebook, are uniformly distributed over GPk,mk .
A random subspace chosen uniformly over GPk,mk can be
generated by generating an mk × Pk matrix whose elements
are i.i.d. complex Gaussian. Then, an orthonormal basis for the
row space of this matrix is calculated using QR decomposition.

B. Grassmannian Subspace Packing
The design of the quantized path gain matrices Xi is

done using subspace packing in Grassmannian manifold. The

packing problem tends to find 2B subspaces in a higher
dimensional space such that the minimum distance between
two subspaces is maximized. There are many distance metrics
that have been used for packing subspaces in the Grassmannian
manifold. In this paper, we adopt the chordal distance, defined
in Eq. (9), as our distance metric. The codebook design is
done by solving the packing problem of 2B mk-dimensional
subspaces in a complex Euclidean space of dimensionality
Pk. We follow the iterative algorithm stated in [11] in order
to solve the subspace packing problem. The solution of this
problem is usually simpler when the number of subspaces in
the codebook 2B is lower than P 2

k . In that case, the minimum
distance between two subspaces in the codebook can reach
the Rankin bound [11], which is the maximum attainable
theoretical distance.

V. THROUGHPUT ANALYSIS

In this section, we calculate the rate gap between the
ideal rate and the rate using a random subspace quantization
scheme. Due to space limitations, we only study the rate gap
for case I assuming that all users have the same number of
receive antennas (i.e., Nk = mk = N ) and same number of
resolvable paths (i.e., Pk = P ). We derive an expression for
the required number of feedback bits to achieve some constant
rate gap, where we prove that the number of bits scales linearly
with the transmit power γdB in dB.

A. Rate Gap
The per-user rate of the ideal case of case I is given by

Eq. (19), and the per-user rate of the practical case of case
I is given by Eq. (21). Following Theorem 1 of [12], which
gives an upper bound for the rate gap in Multi-User MIMO
systems, we derive an expression for the per-user rate gap due
to limited feedback in our massive MIMO system model. The
per-user rate gap ∆R(γ) = RCSIT (γ) − RQUANT (γ) can
be upper bounded as (details of the proof are omitted due to
space limitations):

∆R(γ) ≤ log2

(
1 +

γ(K − 1)M

KN(KP −N)
D

)
, (24)

where D is the average subspace quantization error which is
given by:

D = E
[
d2(H̃k, Ĥk)

]
, (25)

and d(H̃k, Ĥk) is the chordal distance defined in Eq. (9).

B. Quantization Error
In this subsection, we calculate the quantization error, D, of

the spatial direction of user k when the AoD-adaptive subspace
codebook is used. We have Ck,Zk = 1√

M
XZkAk and H̃k =

1√
M

G̃kAk; then, the quantization error is given by

D = E
[
N −

∥∥∥H̃kCH
k,Zk

∥∥∥2
F

]
= E

[
N −

∥∥∥∥ 1

M
G̃kAkAH

kXH
Zk

∥∥∥∥2
F

]
(26)

(a)
≈ E

[
N −

∥∥∥G̃kXH
Zk

∥∥∥2
F

]
(27)
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Fig. 1: BD vs conventional ZF: case I with Nk = mk = 2

where G̃k ∈ CN×P is a matrix whose rows are orthonormal
and its row space represents the subspace spanned by the
rows of G̃k. Step (a) is true due to AkAH

k ≈ MIP . Both
G̃k and XZk are isotropically distributed subspaces on the P -
dimensional space. Then, we can bound the quantization error
as [12]:

D ≤ D̄ =
Γ( 1

T )

T
(CPN )−

1
T 2−

B
T , (28)

where T = N(P −N) and CPN = 1
T !

∏N
i=1

(P−i)!
(N−i)! .

C. Feedback Bits

Now, we discuss the required number of feedback bits
B that results in a constant rate gap. After bounding the
quantization error by D̄, the rate loss can be bounded as:

∆R(γ) ≤ log2

(
1 +

γ(K − 1)M

KN(KP −N)
D̄

)
. (29)

Let the rate gap be such that ∆R(γ) ≤ log2(b) bps/Hz, and
substituting for D̄ from Eq. (28), then the number of feedback
bits that guarantees this rate loss is given by:

B = 3.3 T log10(γ)− T log2

[
(b

1
N − 1)

KN(KP −N)

(K − 1)M

]
+ T log2

(
Γ( 1

T )

T

)
− log2(CPN ), (30)

where B scales linearly with the transmit power γdB in dB.

VI. SIMULATION RESULTS

In this section, the performance of the proposed feedback
system and codebook design is examined and verified. The
system parameters are set as follows. The number of antennas
at the BS is M = 128, the number of users in the system is
K = 8, the number of antennas at each user is Nk = N = 2,
the number of data streams transmitted simultaneously to each
user is mk = 2 and the number of resolvable paths is P = 3.
The path AoDs of the users are independent and uniformly
distributed in

[
− 1

2π,
1
2π
]
.
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Fig. 1 compares the performance of BD and the conven-
tional ZF scheme for case I with Nk = mk = 2. Fig. 1 also
compares the performance of the ideal case, where perfect CSI
is assumed available at the BS, and the limited feedback case
where quantized CSI is fed back to the BS with B = 2 and 4
per user. Note that in the case of conventional ZF scheme, the
channel vector of each antenna at the kth user is separately
quantized and fed back to the BS; therefore, the feedback
bits for each user are divided among its receive antennas in
this case. This is because in the case of conventional ZF, any
user antenna is used to receive a single stream and all other
streams must be nulled (even other streams intended for the
same user), which is not the case for BD. In Fig. Fig. 1, we
plot the per-user rate using the AoD-adaptive codebook with
both random subspace quantization and using Grassmannian
subspace packing based coodbook. From this figure, we can
easily see the performance gains of the BD approach as
compared to the conventional ZF approach. In addition, it
can be noticed that Grassmannian codes are always better (or
slightly better) than random codes. Note that Grassmannian
codes are more structured, which deem them suitable for
practical implementation, while random codes are impractical.
Finally, it is clear that increasing the number of feedback bits
enhances the system performance, and we can get arbitrary
close to the performance of the ideal system with perfect CSI
at the BS.

Fig. 2 compares the performance of BD with ideal and
quantized CSI against the ideal and quantized CSI of the
conventional ZF scheme for case II with Nk = 3,mk = 2
with B = 2 and 4 per user. The same observations mentioned
above while commenting on the results of Fig. Fig. 1 apply
in this case as well. Moreover, it is noticeable that case II has
higher per-user rate than case I for the same number of user
streams. This is due to the fact that in case II we assume more
receiving antennas at each user than the number of streams,
which introduces diversity gain at the users.

In Fig. 3, we present numerical results for the practical
per-user rate when using random quantization codebook. The
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Fig. 3: Ideal vs quantized CSI for case I with B as in (30)

required number of feedback bits is scaled as per Eq. (30)
in order to guarantee a maximum rate gap of log2(b), where
we show the results for b = 2 and 4. We notice in Fig. 3
that the rate gap between the ideal (perfect CSI at the BS)
and practical cases does not increase as the SNR increases;
this is due to scaling the number of feedback bits B with the
transmitted power γdB as explained above. It is clear that the
rate gap at any SNR does not exceed the maximum value of
log2(b), which validates the expression in (30).

VII. CONCLUSIONS

In this paper, we have considered the problem of channel
feedback in FDD massive MIMO systems with multiple an-
tennas at the users. We have considered the use of BD at
the massive basestation. Based on the nature of our channel
model, we have devised a channel feedback scheme to reduce
the required feedback bits. We have quantified the rate loss
due to the use of channel feedback (compared to the case
with perfect CSI at the BS). Finally, we have proposed a
systematic approach to design the channel feedback codebooks
in which the codebook design is formulated as a subspace
packing problem over the Grassmannian manifold.
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