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Abstract—This work investigates the performance of intelligent
reflective surfaces (IRSs) assisted uplink non-orthogonal multiple
access (NOMA) in energy-constrained networks. Specifically, we
formulate and solve two optimization problems; the first aims at
minimizing the sum of users’ transmit power, while the second
targets maximizing the system-level energy efficiency (EE). The
two problems are solved by jointly optimizing the users’ transmit
powers and the beamforming coefficients at the IRS, subject to
the users’ individual uplink rate and transmit power constraints.
A novel and low-complexity algorithm is developed to optimize
the IRS beamforming coefficients by optimizing the objective
function over the complex circle manifold (CCM). To efficiently
optimize the IRS phase shifts over the manifold, the optimization
problem is reformulated into a feasibility expansion problem
which is reduced to a max-min signal-plus-interference-ratio
(SINR). Then, with the aid of a smoothing technique, the
exact penalty method is applied to transform the problem from
constrained to unconstrained. The proposed solution is compared
against three semi-definite programming (SDP)-based bench-
marks which are semi-definite relaxation (SDR), SDP-difference
of convex (SDP-DC) and sequential rank-one constraint relax-
ation (SROCR). The results show that the manifold algorithm
provides better performance than the SDP-based benchmarks,
and at a much lower computational complexity for both the trans-
mit power minimization and EE maximization problems. The
results also reveal that IRS-NOMA is only superior to orthogonal
multiple access (OMA) when the users’ target achievable rate
requirements are relatively high.

Index Terms—Non-orthogonal multiple access, intelligent re-
flective surfaces, energy-efficient networks, manifold optimiza-
tion, complex circle manifold, semi-definite relaxation.

I. INTRODUCTION

Recently, intelligent reflective surfaces (IRSs) have emerged
as a new technology due to their potential for improving the
spectral and energy efficiency of wireless networks [1]-[5].
Generally speaking, an IRS is a planar surface that consists of
a large number of adjustable and low-cost passive reflecting
elements which reflect incident signals after adjusting their
amplitudes and phase shifts. The merit of IRSs lies in their
ability to engineer the wireless channel to realize different
design needs such as signal strengthening and interference
mitigation.

As such, integrating IRSs in different wireless applications
has been extensively studied in the literature. For example, in
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[6], the authors studied the application of IRSs in a single
cell scenario with a multi-antenna base station (BS) and
single-antenna users. They developed alternation minimization
algorithms to minimize the total transmit power at the BS by
applying a semi-definite relaxation (SDR) approach to opti-
mize the beamforming at the IRS. In [7], the authors proposed
efficient algorithms to maximize the energy efficiency (EE) of
IRS-assisted downlink communication systems with a multi-
antenna BS serving multi-antenna users. More specifically,
they developed efficient algorithms based on alternation maxi-
mization, gradient descent, and sequential fractional program-
ming to jointly optimize the transmit power allocation at the
BS and the phase shifts at the IRS. Furthermore, in [§8], a
joint power and user association scheme was proposed for
a multi-IRS-assisted multi-BS downlink millimeter-Wave sys-
tem serving multiple users. Other applications of IRSs include
unmanned aerial vehicles (UAV) communications [9], physical
layer security for covert communications [10], physical layer
network coding [11], and wireless mesh back-hauling [12].

Using IRSs in energy-constrained Internet of Things (IoT)
systems presents an attractive solution to address the challenge
of low uplink data rates, which stem from their limited
battery capacity. Since massive connectivity is another crucial
requirement for IoT systems, multiple access (MA) techniques
play a pivotal role in accommodating a large number of IoT
devices. Existing MA techniques can be broadly categorized
into two groups: orthogonal multiple access (OMA) and
non-orthogonal multiple access (NOMA). The NOMA MA
technique stands out as a practical choice for IoT networks,
offering the ability to facilitate the access of numerous devices
by allowing multiple users to simultaneously use the same
spectrum [13], [14]. The merits of NOMA have made it a key
technique to enhance spectral efficiency (SE) and EE of wire-
less communication networks [15]-[17]. Unlike OMA, NOMA
can serve multiple users using the same frequency/time/code
resources, and applies successive interference cancellation
(SIC) at the receiver to reduce co-user interference [17], [18].
In comparison to OMA, integrating NOMA into conventional
IoT applications without IRSs has demonstrated several advan-
tages, particularly in applications like Mobile Edge Computing
(MEC) [19], and data collection systems [20], [21].

The celebrated merits of NOMA and IRSs make them
potential candidates for future wireless networks that can
enable various IoT applications. Motivated by this, we inves-
tigate the potential of integrating IRSs and NOMA in uplink
communications. Specifically, an optimization-based study on
the applicability and effectiveness of the introduced system
is presented to jointly optimize the users’ transmit powers
and IRS phase shifts. The aim is to minimize the power



consumption of battery-based nodes and to maximize the EE
of the system while satisfying the quality-of-service (QoS) and
transmit power constraints for each node.

A. Related Literature on integrated IRS-NOMA

Much effort has been devoted to integrating IRSs with
NOMA. Prior research on this topic can be divided into
two categories: downlink IRS-NOMA and uplink IRS-NOMA.
While most of the work on this topic is related to downlink
IRS-NOMA, there exist only a few articles that consider the
uplink scenario. Therefore, in this paper, we are interested
in the optimization of the latter scenario by jointly optimizing
the users’ transmit powers and IRS phase shifts. We first focus
on reviewing optimized uplink IRS-NOMA systems, then, for
the sake of completeness, we review relevant works on the
downlink scenario.

Early work on uplink IRS-NOMA optimization can be
found in [22], which considered the users’ sum rate maximiza-
tion under individual QoS and power constraints, assuming
perfect knowledge of the IRS-BS and IRS-users channels'. To
achieve their objectives, the authors converted the optimization
problem to a semi-definite programming (SDP) problem, and
then used SDR to optimize the IRS reflecting coefficients.
Besides, the authors in [28] studied the max-min fairness
secrecy rate of a two-user IRS assisted uplink NOMA scenario.
The solution of the formulated optimization problem includes
the conversion of the passive beamforming problem at IRS
to SDP followed by employing sequential rank-one constraint
relaxation (SROCR) to get a rank-one solution for SDP. In
addition, a two-step optimization scheme is devised in [29] for
solving the sum rate maximization problem of an active-IRS
assisted uplink NOMA scenario. A fixed point iteration (FPI)
method has been employed to optimize the phase shifts, which
has performance degradation as the number of IRS reflectors
increases. In [30], the max-min fairness rate optimization for
an IRS assisted uplink NOMA system with receive beam-
forming at BS was studied. Successive convex approximation
(SCA) was used to solve the passive beamforming problem at
IRS using second order cone programming (SOCP) in order
to avoid the high complexity SDR solution. However, the
performance of SCA degrades as the number of IRS reflectors
gets high. Moreover, in [31], the EE maximization problem for
an IRS assisted uplink multiple-input-multiple-output (MIMO)
NOMA scenario was studied. To achieve their research goals,
the authors proposed an iterative approach to solve this multi-
variable non-convex problem where they used an SDP iterative
approach and difference of convex (DC) programming to
optimize the IRS phase shifts. Nevertheless, the complexity
of their proposed technique is indeed high as it is based on
SDP. Amongst the other works in literature, [32] proposed a
hybrid NOMA-OMA multiple access scheme in active IRS
aided energy-constrained IoT systems to assist the uplink
transmission from multiple IoT devices to an access point.
The authors’ formulated the problem to maximize the sum
throughput by optimizing the IRS beamforming vectors across
time and resource allocation. In [33], the authors proposed

I'The assumption that the IRS channel vectors are known is widely accepted
as there are specific works on IRS channel estimation [23]-[27].

using IRS assisted uplink NOMA transmission to reduce the
interference in enhanced mobile broadband (eMBB) and ultra-
reliable low-latency communications (URLLC) devices. Both
[32], [33] have used the high complexity SDP approach to
solve the presented problems. Finally, a low complexity design
for IRS assisted uplink sparse code multiple access (SCMA)
was proposed in [34], however, the presented design consid-
ered SCMA not the general uplink power domain NOMA
scheme as our proposed system model in this manuscript.

On the other hand, a range of optimization algorithms
were also proposed for optimizing IRS-assisted downlink
NOMA systems. For instance, the rate performance of IRS-
assisted downlink NOMA was optimized in [35] by maximiz-
ing the minimum decoding signal-to-interference-plus-noise-
ratio (SINR) of all the users by leveraging the alternating
optimization and SDR techniques to jointly optimize the
NOMA power allocation and IRS phase shifts. Addition-
ally, in [36], the authors solved the sum rate maximization
problem of a downlink multiple-input-single-output (MISO)
IRS-assisted NOMA system using alternating optimization
and SDP-based sequential rank-one relaxation approaches to
jointly optimize active beamforming at the BS and passive
beamforming at the IRS. In [37], the EE of an IRS-assisted
downlink NOMA system was maximized by jointly optimizing
the transmit beamforming at the BS and the IRS phase shifts
using alternating optimization and SDR. Moreover, the total
transmit power minimization at the BS for an IRS-empowered
downlink MISO NOMA network was investigated in [38],
where the joint active beamforming at the BS and passive
beamforming at the IRS problems were formulated as a
bi-quadratically constrained optimization problem. Then, the
formulated problem was converted to a bi-SDP problem, and
a unified DC approach was proposed to obtain a rank-one
solution.

It is noteworthy to observe that the formulated optimization
problems in most of the previous IRS-NOMA literature have
been solved by converting them into SDP problems and then
employing either SDR or successive rank-one procedures to
obtain the final solution. However, these solutions suffer from
extremely high complexity, which makes them impractical
for energy-autonomous applications. Moreover, in IRS-based
systems, the complexity and time requirement for execut-
ing existing optimization algorithms severely increase as the
number of reflecting elements increases. Therefore, devising
low-complexity, efficient optimization techniques for optimiz-
ing IRS-assisted uplink NOMA systems is indispensable for
energy-autonomous networks, such as IoT and UAV networks,
where the BS, possibly attached to a drone, and users have
limited hardware capabilities and energy budgets.

B. Motivation and Contributions

The design of multi-user IRS-assisted uplink NOMA is
challenging since it requires the joint optimization of both
the transmit powers and the IRS reflection coefficients. The
optimization variables are coupled together, which makes the
problem intractable for a closed-form solution and highly non-
convex to be solved using low-complexity convex optimiza-
tion algorithms. Therefore, existing solutions for uplink IRS-



NOMA design in the literature use SDP approaches to convert
the problem into a convex form, which can then be solved
using convex programming tools, as mentioned earlier. How-
ever, SDP-based approaches have high complexity, especially
when the number of IRS elements is high, which renders these
solutions unsuitable for IoT applications where the BS may
have limited power resources that cannot accommodate very
complex tasks.

Motivated by the complexity drawback of existing up-
link IRS-NOMA optimization algorithms, we propose a low-
complexity and efficient optimization algorithm that suits
battery-powered IoT applications with limited processing ca-
pabilities. Specifically, we consider the IRS-assisted uplink
NOMA system, shown in Fig. 1. Manifold optimization-based
algorithms are proposed for the system model introduced
in this paper, aiming to provide a low-complexity design
with powerful performance. Two main optimization problems,
namely, the total users’ transmit power minimization and the
system’s EE maximization, are formulated and solved. It is
noteworthy to mention that these two problems form the
basis for reducing power consumption or increasing energy
efficiency in the network. To solve these problems, we use
iterative alternation algorithms to jointly optimize the transmit
powers of the users and the phase shifts at the IRS, under
QoS and transmit power constraints for the users. In each
iteration of the alternating algorithm, the transmit powers
optimization is solved given the IRS passive beamforming
coefficients; then, the IRS coefficients are optimized given
the obtained users’ transmit powers. To solve the IRS phase
shifts optimization in each iteration, we devise an efficient
complex circle manifold (CCM) optimization algorithm. The
performance and complexity of the proposed technique are
then compared against three SDP-based benchmarks that were
used in the literature of IRS-NOMA, which are SDR [6], SDP-
difference of convex (SDP-DC) [38], and SROCR [36]. It is
noteworthy to highlight that manifold optimization was used
in different IRS-assisted communication systems, e.g., [11],
[39]-[41]. As for complexity, the proposed CCM technique
has a complexity of order O(L?), whereas the SDP algorithms
have a complexity of order O(L*?®), where L is the number
of IRS reflectors.

Despite the benefits of integrating NOMA with IRS in
energy-constrained IoT networks, as discussed at the begin-
ning of this subsection, it is necessary to compare the perfor-
mance gain of integrating IRS-NOMA into energy-constrained
IoT systems against the IRS-OMA counterpart. For multi-user
IRS-enabled systems, does the IRS-NOMA scheme always
outperform the IRS-OMA one in all cases? To answer this
question, we proceed to formulate and address both the
challenges of minimizing transmit power and maximizing the
EE in an uplink OMA system with IRS. This involves the joint
optimization of IRS phase shifts and time allocation for each
user. The goal is to compare the performance of the IRS-
NOMA scheme using the proposed low-complexity CCM-
based algorithm against the optimized IRS-OMA counterpart.

In summary, the main contributions of this work are:

o The total transmit power minimization and the EE max-

imization problems are formulated based on the intro-

---------- Direct channels
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BS

Figure 1: IRS assisted NOMA uplink system model

duced IRS-assisted uplink NOMA system. Accordingly, a
joint design for optimizing the users’ transmit powers and
the IRS phase shifts is then proposed to solve each of the
two considered problems using alternating optimization.
Moreover, we shed light on the relationship between the
two considered optimization problems in the simulation
results, which has not been thoroughly investigated in
the literature. The results unveil that although the two
problems converge to the same solution when the users’
uplink target rates are high, they have different solutions
when the target rates are low.

Additionally, to solve the IRS passive beamforming
sub-problem, we devise a novel low-complexity mani-
fold optimization-based approach. The proposed manifold
optimization-based algorithm can obtain a locally optimal
solution that adheres to the unit-modulus constraints of
the IRS reflecting coefficients.

We further formulate and solve both the transmit power
minimization and EE maximization problems for the
IRS-assisted uplink OMA system, by jointly optimizing
the IRS phase shifts and the time allocation for each
user, to compare against the IRS-assisted NOMA system.
Interestingly, the simulation results reveal that NOMA
outperforms OMA when the target user rate constraints
are high; however, OMA is preferable when the target
uplink rate constraints are low.

The rest of the paper is organized as follows. In Sec. II, the
IRS-assisted uplink NOMA system model is presented, while
in Sec. III, the total transmit power minimization problem
is formulated and solved. The EE maximization problem is
presented and solved in Sec. IV. In Sec. V, we discuss the IRS-
assisted uplink OMA system. Finally, the numerical results and
conclusions are given in sections VI and VII, respectively.

II. SYSTEM MODEL

As shown in Fig. 1, we consider an IRS-assisted uplink
NOMA system in which a group of K single-antenna users
transmit data symbols to a single-antenna BS in the same
time-frequency block. The uplink transmission is assisted by
an IRS panel, which consists of L reflecting elements where
the i-th element can introduce a phase shift 8; to the incident
signal before reflection. It is worth mentioning that the NOMA



scheme is used in this system model to leverage the variation
in the users’ distances from the BS, i.e., there exist near
users and far users, which is known to be an appropriate
scenario in which NOMA can perform well. Using NOMA
in this setup is beneficial, in most scenarios, since it can
provide more power savings than using OMA by reducing the
overall transmit power of the users while satisfying their QoS
requirements. The dotted lines in Fig. 1 represent the direct
channels between the users and the BS. The direct channels are
assumed to be independent and identically distributed (i.i.d.)
Rayleigh fading channels because line-of-sight (LoS) paths
are not guaranteed in several environments where multiple
blockages and obstacles between the users and BS obstruct
the communication between them. This actually motivates
the deployment of IRS in the considered system model to
provide robust links between the users and BS and facilitate
communication between them. The direct channel between the
k-th user and BS is denoted as v;. The IRS-BS and the k-th
user-IRS channel vectors are denoted as g € CL*! and hy,
respectively, where they are represented by the solid lines in
Fig. 1. The IRS panel is typically placed in a position where a
LoS path to the BS and to the users always exists in practice.
Hence, we adopt Rician fading channels to model the channel
vectors g and hy. The channel vector g is given as

g = %gms—k M NLoS
Kip+1 Kip+1

where K;p denotes the Rician factor of g, d;p is the distance
between the IRS and the BS, and g”°® and g’V 1° are the line-
of-sight (LoS) and non-LoS (NLoS) components, respectively.
The LoS component is deterministic, however, the elements
of gVl°% are independent and identically distributed (i.i.d.)
complex normal, CA/(0,1), random variables. The channel
vector between user k and the IRS, hy, is given as

PL(dU I)KUI LoS
h, = ——"—hy* +
k Kyr+1 k

where Ky denotes the Rician factor of hy, dy, ; is the
distance between user k and the IRS, hﬁ"s and h{c\' LoS are
the LoS and NLoS components, respectively. PL represents
the path loss which is modeled for all the channels as

d\ ¢
PL(d) = no (d) , 3)

where 7 is the path loss at the reference distance dy = 1 m,
d represents the link distance between the transmitter and the
receiver, and « is the path loss exponent.

PL(dUk,I)hkNLoS (2)

Kyr+1

In Fig. 1 the K users transmit K data symbols simultane-
ously; hence, the received signal at the BS is written as
K
y= Z(gTth + vk ) V/PrSk + 1, “)
k=1
where sy, is the data symbol transmitted by user &, E[|s;|?] =
1, px is the transmitted power from user k, and n is the

complex Gaussian CA(0,02) additive white Gaussian noise
(AWGN) at the BS. W is an L x L diagonal matrix, i.e.

W=diag{w}, whose diagonal elements are the IRS reflection
coefficients, where w=[e7%1 ... e792]T The angle 6,€[0, 27|
represents the phase shift introduced by ith reflecting element.

In uplink NOMA, the BS performs SIC to successfully
decode the K superimposed users’ signals. SIC requires
ordering of the users according to their effective channel
gains. Users with better effective channel gains are decoded
first considering the other interfering signals as noise. The
combined effective channel of the kth user in this system
model is g7 Why, +wvy,, which clearly depends on the unknown
phase shifts matrix W. Therefore, in this paper, we order
the users according to their maximum achievable effective
channel [35]. For example, for user k, we can calculate the
maximum achievable effective channel gain at the BS by
assuming that the IRS phases are solely optimized to maximize
the channel of this user. In this case, the IRS phases should
be adjusted to align all the combined IRS channels with the
direct link vy, of user k, i.e., 6;=0,, —0,, —04,,. In this case,
the maximum achievable channel gain of user & is calculated
as Zf:1| gillhri|+|vk|. Without loss of generality, we assume
that the users are arranged in a descending order as

L L
D lgillhail+or[> o= lgillhwal+Hoxl . (5)
=1

i=1

Assuming successful decoding of the users at BS using SIC?,
the SINR of the kth user can be expressed as

2
pr |87 Why+uy|

K 2 )

Zj:k+1 p; lg" Why+v;|” + o

T = (6)

where Zf:k_H D; |gTWhj+vj|2 = 0 when k = K, i.e., the
last user in the SIC order suffers no interference. Then, the
corresponding achievable data rate of the kth user is given by

Ry =logy (1+), Vk. 7

The main interest of this work is to efficiently optimize the
IRS reflection coefficients matrix, W, and the users’ transmit
powers, py, with the objective of minimize the overall transmit
power while satisfying the required data rates. This problem
is challenging since the optimization variables, pr and W, in
(6) are coupled, which makes it difficult to solve at once. The
optimization problem and its challenges are presented in Sec.
III. Existing solutions for similar optimization problems in the
literature rely on SDP approaches, which are computationally
extensive, especially when the number of IRS elements is
large. Motivated by this, we present an efficient manifold
optimization-based approach that provides better performance
with much lower computational complexity, as illustrated in
Sec. IIL.

2It is widely accepted to assume the successful decoding of the NOMA
users in the capacity equation according to the SIC order [13], [14], [22],
[42]-[46]. That is, it is common to assume that decoding can be successful if
the user transmits at a rate that does not exceed its capacity limit. Additionally,
the NOMA users are assumed to have difference in their distances to the
IRS so that their average received signal powers at the BS have a minimum
difference that is suitable for employing SIC. The difference in the average
received signal power of all the NOMA users is realized by grouping users
with appropriate variance in their distances to the IRS.



III. TOTAL TRANSMIT POWER MINIMIZATION

In this section, we aim to minimize the sum of the trans-
mitted powers of all the users in the multi-user IRS assisted
NOMA system assuming that each user has a minimum rate
requirement that must be guaranteed to satisfy some QoS
requirement at each individual user. This minimization is done
by jointly optimizing the passive beamforming coefficients at
the IRS, W, and the power allocation at the users. Hence, the
sum power minimization problem can be formulated as

K
min kZ_lpk (8a)
st. Ry > R, k=1,2,...,K, (8b)
Pk S Pmax7 (8C)
lws|= 1, i=1,2,...,L, (8d)

where w;=e’% is the (i,i) entry of W and P™* is the
maximum allowable uplink transmit power for the users.
Solving the optimization problem in (8) is challenging because
the optimization variables, p; and w;, are multiplied by each
other in constraints (8b), and the constraints in (8d) are non-
convex. We use the fact that we have two sets of optimization
parameters, py’s and w;’s, coupled together in (8), and propose
an alternating optimization algorithm to solve it in p and W
in an iterative manner.

During each iteration n in our proposed alternating opti-
mization algorithm, we solve the power allocation problem
to get p” first for a given W”~1, then we optimize W for
a given p” to get W™, and so on. Therefore, the original
problem (8) is separated into two sub-problems that are solved
alternatively, as explained in the next subsections.

A. Optimization of users’ transmit powers

In the nth iteration, given the value of W™, the power
allocation problem in p reduces to

K
min 9a
1 ;pk (9a)
s.t. Cx(W" p)=pi |gTthk—H}k’2 — (QR;:“H -1)
K

x| X" b |g"Wrhyo;|* 02 | 20, Ob)

j=k+1

k=1,2... K,
pr < P (90)
pr > 0. 9d)

It is worth noting that there is no need for adding extra
constraint for the SIC decoding order since it is already
embedded in the rate constraints of the NOMA users (9b). That
is, given the reflection coefficient matrix W, the constraints in
(9b) must be satisfied with equality as an optimality condition,
which guarantees the correct SIC order.

The optimization problem (9) can be expressed as a linear
program in p in the form of [47]

min ¢’'x (10a)
st. Ax<b (10b)
x>0, (10c¢)

where the constraints in (9b) and (9c¢) are affine inequalities in
p which can be all written in the form of (10b), and the cost
function (9a) is linear having the form of (10a) with c equals to
an all ones vector. Therefore, problem (9) is a linear program
in p which can be easily solved using the standard simplex
method. The simplex method is a well known algorithm to
solve any linear program, having a linear objective function
and affine constraints, using slack variables and pivot variables
as a means to find the optimal solution [47], [48].

In the next subsection, we present a novel and low complex-
ity approach for solving the challenging optimization problem
(8) in W given the values of p;’s. We first present an SDP
approach as a benchmark from the current solutions in the
literature, followed by our proposed novel and low complexity
CCM based optimization approach. The performance of the
two approaches will be compared along with other current
SDP schemes, in the results section.

B. Optimization of the IRS reflection coefficients

Firstly, we present a current SDR benchmark scheme and
emphasize the drawbacks of existing counterparts.

For some given py, values in the nth iteration, the optimiza-
tion problem in (8) becomes a feasibility-check problem in
W, since the cost function in (8a) does not depend on the
IRS coefficients W. Hence, given the power allocation vector
p", the feasibility-check problem in W is given as

Find W (11a)
st. Cp(W,p") >0, k=1,2,....K, (11b)
lwil=1, i=1,2,...,L. (11c)

1) SDR benchmark for optimizing W: Optimizing W in
problem (11) can be solved using SDR by converting problem
(11) into a SDP as follows. Problem (11) is non-convex
because of the non-convex constraints in (11b) and the unit
modulus constraints in (11c). However, by converting (11) into
a SDP, the problem is transformed to a convex problem and
solved using standard tools such as CVX. The constraints in
(11b) can be converted into quadratic forms w.r.t. the passive
beamforming vector w, then converting them to convex affine
constraints using the SDP technique as follows. The squared
magnitude of the effective channel of user k can be written as

6" Why, +v|” = [gTHyw + o], (12)

where Hj=diag(hy) and weCL*! is a column vector con-
taining the diagonal elements of W. Then, we can expand the
squared magnitude of the effective channel of the kth user as

2 * *
gTka—i—vk’ = (wlHEg" +v})(gTHyw +vi) (13)

= (szk+UZ)(sz+vk), (14)



where z,=H}!g*€CF*!. Hence, the squared effective chan-
nel gain of user & can be given as a quadratic term in w as

H, _H H H 2
ZrZ, W+ Wz v + 25 wop + o

(15)
where

2
gTka + vk’ =w

Equation (15) can be expressed as W/ ByW + |vx|?,

— _ |W _ | ZkZg Z Vg
w = [1} and By = {ZEUZ 0 }

Knowing that W' HB, w=trace(Ww B, w)=trace(Byww ),
and by letting W=ww HeCLH1*L+1 we can convert the
problem into SDP. The matrix W is the outer product of
the vector w with itself, hence W is a symmetric positive
semi-definite matrix whose rank is 1. Consequently, by intro-
ducing the slack variable o to maximize the minimum of the
constraints in (11b), problem (11) can be reformulated as

(16)

I}’l\aX «
W, a

st D (trace{BkW}Hka) — (2B —1)x

(17a)

K —~
( > v (trace{BjW}+|vj|2) —Q—a%) —a > 0,VEk,

j=k+1
(17b)
W(i,i)=1, i=1,2,...,L+1, (17¢)
W =0, rank(W) =1, (17d)
a > 0. (17e)

It should be noted that introducing the slack variable « in (17)
is a standard method for maximizing the minimum of some
functions [6]. Obviously, problem (17) is a SDP, however, still
non-convex because of the non-convex rank one constraint in
(17d). By dropping (17d), SDP becomes convex and can be
solved using CVX. Assuming the optimal solution of the SDR
of (17) is W* then we need to convert W* to a feasible
solution of the original problem (11). The rank of the obtained
solution, W*, of the SDR is generally greater than 1, thus we
will always need to reduce our solution to a rank one matrix.
An effective way to find a good rank one approximation is to
select the eigenvector of W* that corresponds to its maximum
eigenvalue [49]. Assuming that the maximum eigenvalue of
‘W* is A\; and the corresponding eigenvector is qi, then W* =
v A1q: can be considered a solution to our original problem
(11). However, this solution maybe still infeasible and does
not satisfy the unit modulus constraints for w;’s. To map the
solution to a nearby feasible solution, the elements of W* are
normahzed to form w whose elements are defined as w; =
|w* Vi€ {1,..., L+ 1}. Finally, the SDR-based solution of
the IRS passive beamformlng sub-problem is extracted from
W as w* w[L1+L1]’ where W1,z contains the first L elements
of w, and w1 is the last element of it.

We can see that the SDP approaches generally broaden the
original feasibility region to a larger set. This expansion is
achieved by transforming the optimization variable from a
vector, w € CL*1 to an LxL matrix in CE*L, denoted
as W = ww!, which is the outer product of the original
optimization vector. Subsequently, the optimal solution of the

newly expanded SDP problem, denoted as W™, undergoes
projection onto the original feasible set to derive a solution
for the original optimization vector, w*. The projection is ex-
ecuted using Cholesky decomposition, which may sometimes
yield results deviating from the optimal solution to the original
problem. This deviation contributes to a relative reduction
in performance when compared to the proposed CCM-based
approach.

Moreover, since the SDP based solutions, like the SDR
solution in (17), transform the original non-convex problem in
(11) to a convex dual by replacing the original optimization
vector, w, with the outer product matrix, W = ww? | the
number of the optimization variables of the new problem ex-
pands from L to L?. Therefore, the complexity of the existing
SDP solutions are extremely high since they search over a
far larger feasible set with L? optimization variables which
are the elements of the optimization matrix, W. However, as
illustrated next, the proposed CCM based algorithm searches
over the original feasible set, which is the complex circle
manifold, for the original optimization vector, w, with far
less number of optimization variables, L. This leads to a
substantial complexity reduction in our algorithm compared
to the counterparts as shown in Sec. III-D.

2) The proposed CCM based approach for optimizing W :
In this subsection, we introduce an efficient and low complex-
ity solution for optimizing the passive beamforming vector
in (11), which is the proposed manifold optimization based
algorithm. As long as the cost function in (8a) does not depend
on W, we propose to solve (11) in the second step of each
iteration of the proposed alternating optimization algorithm
to expand the feasibility region of (9) in the first step of
the next iteration, i.e., when optimizing p given W that has
been optimized in a previous iteration. The feasibility region
expansion means that the IRS coefficients are optimized to
control and expand the boundaries of the feasibility region
of the power allocation sub-problem during the next iter-
ation of the alternating optimization algorithm. Expanding
the feasibility region of (8) directly requires increasing the
achievable users’ SINRs in the constraints in (8b), which
gives higher tolerance for the power to be reduced in the
power allocation sub-problem since the SINRs are already
beyond the boundaries. Consequently, the feasibility expansion
technique is realized by maximizing the minimum of the SINR
constraints, which results in increasing all the users’ SINRs.
This, in turn, enhances the convergence of finding a solution
to (11). The logic of this is that all the constraints are already
satisfied with equality by the optimal solution of the sum
power minimization sub-problem in (9). Therefore, optimizing
‘W, to enforce the users’ achievable data rates to be larger than
the minimum target rates, forthrightly results in the reduction
of the total transmit power in (9). Therefore, the problem of
maximizing the minimum of the constraints shall be written
as

max

w

min{Cl(W, pn), CQ(Wv pn)’ AR CK(Wa pn)}

(13)
st (11b), (11¢).



The min function in (18) is not smooth. Hence, we use a
smooth and differentiable approximation as

K —1/w
Inkin|Ck|: <Z Ck“’> , as w — +00, (19)
k=1

and |Cy|= C}, because we know that all the constraints are non
negative, i.e., Cx > 0. Therefore, the manifold optimization
problem can be written as

K —1/w
mvz‘x/x (}; Cy >

s.t. (11b), (11¢).

(20)

The unit-modulus constraints in (11c) restrict the optimization
vector, w, to be located on the surface of a smooth Riemannian
manifold contained in CF. Precisely, all the optimization
variables, w;, lie on a continuous surface called the CCM,
which is defined as

S={w; € C: |wy|=1}. (21)

The circle, S, forms a smooth sub-manifold of C which is a
Riemannian manifold. Due to having L optimization variables
in (20), the feasible set of the optimization problem is the
Cartesian product of L complex circles which is given as

81><82X...X8L. (22)

The Cartesian product of smooth Riemannian manifolds forms
a smooth Riemannian sub-manifold of C. Hence, the feasible
set of (20) is an L-dimensional CCM which is formally defined
as

SEAS ... xS, ={w=[w,---,wg] € CF 23)
Pwy|= - = Jwi|= 1)

The optimization problem in (20) has extra constraints in
(11b) other than the unit-modulus constraints. In the following,
we explain how to mnanage the constraints given in (11b), to
solve (20). We propose to handle these additional constraints
by using a standard approach called the exact penalty method.
To account for the constraints in (11b), the exact penalty
method adds a weighted penalty term for each constraint
to the the objective function being optimized. When one of
the constraints is violated, the modified objective function is
largely penalized by moving far away from the optimum point.
By using the exact penalty method, (20) is reduced to an un-
constrained optimization problem, but generally having a non-
smooth objective function. Therefore, in the Riemannian case,
the exact penalty method transforms (20) to an unconstrained
optimization problem over the L-dimensional complex circle
manifold as follows

K —1/w K
<Z C’k(w)“’> +p <Z max{0, —C’k(w)}> )
k=1

= 24)
where p > 0 is a penalty weight and M is the L-dimensional
complex circle manifold over which the problem is optimized.
Note that the constant modulus constraints in (11c) are satis-

max
weM

fied by restricting the feasible set to the manifold M. In the
exact penalty method, only a finite penalty weight, p, is needed
to exactly satisfy the constraints, hence the method’s name,
[50]. The penalized objective function in (24) is neither smooth
nor differentiable due to the existence of the max functions
that replace the constraints with the corresponding penalties.
Therefore, we can use a smoothing technique to smooth and
solve (24). Like the case of the min function in (18), we need
to represent the max function in (24) using a smooth and
differentiable alternative, so that we can derive the Euclidean
gradient and the corresponding Riemannian gradient to be
used in the manifold optimization algorithm steps. Without the
smooth alternative, the derivation of the Riemannian gradient
of the original version in (24) may not be possible. By using
the linear-quadratic loss approach [51], the max function in
(24) can be approximated, using a smoothing parameter v > 0,
as max{0, z} =~ P(z,u), where P(z,u) is given by

0 <0
Plz,u) = { & 0<z<u (25)
x—% T > u,

Hence, a smooth and differentiable unconstrained version of
our manifold optimization problem can be written as

max
weM

K —1/w K
o= (L ) 4o £ Peam).
- - (26)
Thus, the problem in (20) is converted to a smooth uncon-
strained manifold optimization problem whose feasible points
lie on the surface of the complex circle manifold, SE. In
that case, we can utilize gradient-based manifold optimization

techniques to solve (26).

Similar to the case of Euclidean spaces, there are two main
steps for a gradient-descent based algorithm on Riemannian
manifolds. Firstly, a descent direction should be found, then
a step size is computed along this direction. Afterwards, the
solution is updated iteratively until convergence by repeating
the two steps in each iteration. However, calculating a descent
direction should be adjusted to take into account the geometric
nature of the manifold, which is discussed in the following.
The tangent space, T M, at a point, w, on a differentiable
manifold, M, is defined as the real vector space that intuitively
contains the possible directions in which one can tangentially
pass through w. The tangent space at w is given by

ToM={veCl: - Rivow")=0.}, (27)

where R(.) denotes the element-wise real-part of the complex
vector, and ® is the Hadamard element-wise multiplication.
In the context of manifold optimization, the gradient of a
function is called the Riemannian gradient which is defined
as the direction of the steepest increase of the objective
function at a certain point w, and this direction must lie in
the tangent space at the point w. The Riemannian gradient
at a point on the manifold is calculated by first calculating
the Euclidean gradient at that point then projecting it onto the
tangent space at the point using a projection operator. The
orthogonal projection operator of a vector v onto the tangent



space, Ty M, at point w on the L-dimensional complex circle
manifold is given by [50]

Prpmv)=v-RVOW)OWw. (28)

Hence, the Riemannian gradient of our smooth objective
function () in (26) on the manifold can be given as

VmQ(w) = Pr, m(VQ(W))

=VQ(w) —R(VQ(W) O w") O w, (29)

where VQ(w) is the Euclidean gradient at the point w. In the
following, we derive the the Euclidean gradient of (), which
is required to obtain the Riemannian gradient. The Euclidean
gradient is given by

9@ 0Q

Q1"
8’[1)1 (’)wz BwL] ’ (30)

vow) - |

where 0Q)/0w;=0Q/0R(w;) + j0Q/IT(w;), and J(.) de-
notes the imaginary part of the complex number. Every partial
derivative w.r.t. w; is calculated as

0Q  of W)
Bu, ~ Guy * P2 R,

where f is the first term of the objective function @) in (26),
and % is computed as

of __of ., of
dw;  OR(wi) 3wy

K /-1 g
= <Z Ck(W)_7>
k

€Y

D Cr(w) T (W), (32)
1 k=1

where C},(w) is calculated as
= oR(wi) 7 93(wy)

= Pk (29{(de) (aki—jb;ﬂ-) + 23(d£w)(bki+jaki))

Cllci(w)

K
~ (oF 1){ > (29%(d;€w)(a“—jb”)
l=k+1

+23(df w) (bli+jali)> }7 (33)
where ar; =R (hkig:), bei=T(hkig;) and the vector dy, = h;, ®
g is the Hadamard product of the two vectors hy and g. The
partial derivative, W, is calculated as

IP(=Cr(w),u w
EoRwh ) ety () 05 —Culwou) <
“Cw)  ~Ci(wu) 2,
(34)

where C};(w) is calculated in (33). Then, by substituting (32)
and (34) in (31), we obtain the Euclidean gradient which
is required to calculate the Riemannian gradient in (29) for
our algorithm. Algorithm 1 illustrates the steps of solving
the unconstrained manifold optimization problem in (26) by
updating the penalty coefficient p and the smoothing parameter
u in an iterative manner.

Algorithm 1: Exact penalty method via smoothing

1 Input: Starting point wy, starting penalty coefficient
po, starting smoothing accuracy g, minimum
smoothing accuracy iy, constants 6,, € (0,1),

6, > 1, 7 > 0, minimum step length dpy;n.

for [ =0,1,2,... do

3 To obtain w;,;, choose any sub-solver to
approximately solve

(5]

min

we Q(waplvul)

with warm-start at w; and stopping criterion

||grad Q(Waplvul)” S J.

4 if
(dist(w;, Wi+1) < dimin OF 1) < Umin) and Ci(wip1) <
7 then

5 | Return wi1;

6 end

7 Up+1 = max{umim euul};

8 if {=0o0r —Ci(w;41) > 7) then

9 | pirr =0,

10 else

1 \ Pl+1 = Pis

12 end

13 end

The feasibility of (20) is ensured by restricting the feasible
set of the optimization problem to the complex circle manifold
to satisfy the unit modulus constraints in (11c). The other
constraints in (11b) are satisfied by penalizing the original
cost function as in (24) using the exact penalty method.

Next, we investigate the behavior of Algorithm 1 and
explain how the parameters p and u are updated in each
iteration until convergence. First, we need to mention that the
optimum points of the penalized unconstrained problem in (26)
are the same as the optimum points of the original problem
in (20) when the penalty coefficient p is higher than a certain
threshold [50]. This threshold is usually unknown; hence, we
adopt a common iterative approach provided in [52] to address
this problem. This approach does not start with a large p
because this may slow down the convergence of Algorithm
1. Therefore, Algorithm 1 starts with a relatively low initial
value of pg, then this value is increased in each iteration,
by multiplying it by the constant ,>1, if the constraints in
(11b) are violated as shown in lines 8 and 9 in Algorithm 1.
The parameter 7 is a tolerance factor which is a low positive
number so that if —Cy(w;41) surpasses 7, the point w4 is
considered out of the feasible region and p must be increased.

The approximation function in (34) is more accurate when
the smoothing parameter u; is decreased. However, if u; is
too small, numerical difficulties may arise when using the
approximation function in (34). Consequently, Algorithm 1
starts with wug, then keeps decreasing u;, by multiplying it with
the constant fraction 6,,, in each iteration, as in line 7, until it
reaches a minimum value uy,;,. Algorithm 1 terminates when



the Euclidean distance between w;;; and w; is smaller than
dmin- To solve the unconstrained optimization problem in line 3
in each iteration, we use the trust region manifold optimization
solver [50], that exists in Manopt MATLAB toolbox [53], by
setting a stopping criterion on the gradient norm.

C. Convergence of the alternating optimization discussion

The complete procedure of the proposed CCM-based alter-
nation optimization algorithm is summarized in Algorithm 2,
where we alternately solve (8) by solving the power allocation
problem (9) and the passive beamforming problem at IRS
(26) using the proposed CCM approach. In each iteration
of Algorithm 2, we obtain a solution that is used as the
initial point for the next iteration. Specifically, the alternating
optimization algorithm starts by solving problem (9) given the
beamforming vector, w,_1, rather than solving (26) given
Pn—1. This is intentionally designed because (9) is always
feasible in p for any beamforming vector w, whereas (26)
may not always be feasible for any arbitrary p. Intuitively,
when the obtained solution from (26) achieves a higher user
uplink rate than the target minimum rate constraint for user k,
the transmit power of user k can be suitably decreased while
maintaining all the rate constraints. Consequently, the total
transmit power in (9) can be reduced accordingly.

More precisely, we can guarantee the convergence of the
proposed alternating optimization solution for (8) using the
following argument. We can deduce that the cost function
of (9), which is the sum of transmit powers at the users,
always decreases over the iterations when solving (9) and (26)
iteratively using Algorithm 2. This proposition can be proven
as follows. When solving (26) in the n-th iteration given the
transmit power vector p,,, the pair (p,,, w,,) must be feasible
and satisfy the constraints of the original problem (8). This is
simply because both the sub-problems (9) and (26) have the
same constraints as (8). However, the obtained wn expands the
feasibility region of (9) in the (n+1)-th iteration of Algorithm
2, which directly leads to a solution of p,,; that corresponds
to a lower cost function of (9), and so on. The algorithm keeps
decreasing the cost function of (9) over the iterations until,
during some iteration, problem (26) cannot further expand the
feasibility region by increasing the achievable SINR of the
users. Therefore, (26) will continue to yield the same solution
for w as the previous iteration, which causes Algorithm 2 to
converge at such an iteration with no further reduction in the
cost function of (9).

In other words, assume that the objective function of (9),
based on a certain IRS coefficients vector w, is denoted as
f(w,p). In the n-th iteration of Algorithm 2, if a feasible
solution to (26) exists, i.e., (W™, p™), then this solution is also

(a)
feasible for problem (9). Then, it follows that f(w", p"*!) <

f(w™, p™) @ f(w™=1 p"); (a) follows because, for a given

w", p"t! is the optimal solution to problem (9). Moreover,
(b) follows since the objective function of (9) does not depend
on w and is only affected by p.

Algorithm 2: Sum power minimization alternation
optimization algorithm

1 Initialize iteration number: n = 0.

2 Initial feasible point: py, Wj,.

3 while = > e do

4 Solve (9) in p given fixed IRS coefficients matrix
Wn—l;

5 Solve (26) in W, using Algorithm 1, given fixed
users’ power allocation vector p,,;

6 Calculate = = Zszl DPk,n—1 — Zé(:l Pk,n;

7 n—n-+1;

8 end

9 Return: p*, W*.

D. Complexity analysis

In each iteration of the alternating optimization algorithm,
we solve the passive beamforming optimization at the IRS
either with the proposed manifold optimization-based method
in Algorithm 1 or with the SDR benchmark. The complexity of
the SDR sub-problem in (17) is determined by the complexity
of the interior point method used for solving the semidef-
inite program, which is given as O(max(L + 1, K)*(L +
1)/21og(1/¢)) [54], where ( is the accuracy of the solution.

Now, we then analyze the complexity of the proposed
manifold optimization-based method presented in Algorithm
1. The complexity of Algorithm 1 is determined by the
complexity of using the trust region method [53] to solve
the unconstrained manifold optimization problem in line 3 of
each iteration of the algorithm. The complexity of solving the
manifold optimization problem mainly depends on calculating
the Euclidean gradient of the cost function, which is given as
O(LQ) [39], [40]. As long as our optimization problem has
K constraints for the users, the complexity of calculating the
Euclidean gradient of Q in (30) can be given as O(KL?).
Therefore, the overall complexity of Algorithm 1 can be
written as O(QAlglKL2), where 4541 is the number of
iterations of Algorithm 1.

From the above discussion, we can easily deduce that the
proposed manifold optimization-based algorithm has much
lower complexity, i.e., order 2, with respect to L compared
to the SDR benchmark, whose complexity is of order 4.5.

IV. ENERGY EFFICIENCY MAXIMIZATION

In this section, EE maximization is discussed for the uplink
NOMA scenario in Fig. 1. The EE of our considered system
model is defined as the ratio of the achievable sum-rate of the
K users in the NOMA resource block over the total sum of
the consumed transmission power by the users. Our objective
in this section is to maximize the EE while guaranteeing the
minimum QoS constraint at each user, i.e., Ry > RE““. The



achievable sum rate of the NOMA scheme can be rewritten as
Wh,+v
Rsum:ZIOgQ 1+ pk|g k k:’ .
Pt |gTWh;+v,|” + o2

— log, (1 ) NEE)

In this section, we adopt the practical power consumption
model used in [7] to model the total power dissipated in our
IRS-NOMA system. The considered total power consumption
model can be expressed as [7]

K .
j=k+1Pj

2

2
L Zle pr |87 Why, + vy
2
O-'n

K

Piotal = Y (v 'k + Puex) + Pas + LP,
k=1

(36)

where vy, is the efficiency of the transmit power amplifiers
of the users’ devices, Pyg, is the hardware static power
consumption at the users, Ppg is the hardware static power
dissipation at BS, and P, denotes the power consumption of
each reflection element of the IRS. Therefore, our considered
EE maximization is formulated as

log, (

14 SE | pr|gTHow oy |?

ox
max 37a)
p.w Piotal (
st pr < P (37b)
C’k(W,p)ZO, k=1,2... K, (370)
wil=1, i=1,2...,L, (37d)

where H, = diag(hy), P™* is the maximum transmit power
allowed at the users, and w is a column vector that contains
the diagonal elements of W. We propose to solve (37) using
alternating optimization as in the previous section because we
have two blocks of optimization parameters p and w. In the
next subsections, we first solve the problem in p given w,
then the problem is solved in w given p.

A. Optimizing the transmit power vector

Given the beamforming vector w, the optimizing (37) is a
non-linear fractional program in p which can be expressed as

oty 1+ S
max - (38a)
p Ptotal
s.it. pp < P™ (38b)
Cr(p;w) >0, k=12 ...,K, (38¢)

where a;, = |g? Hyw+uvy|2. The feasible set of (38) is convex
since all the constraints are affine in p. The fractional objective
function has a concave numerator w.r.t. pg, k € {1,..., K},
while the denominator is an affine mapping over the feasible
set of p. Therefore, this non-linear fractional program is
pseudo-concave and has an optimal solution that can be
efficiently obtained using the iterative Dinkelbach’s algorithm
[55]. The specific procedure of this algorithm is summarized
in Algorithm 3. During each iteration, the proposed algorithm
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needs to solve the following problem

log, <1

(38b), (38c¢),

max

ZK Prag
4 k:%
P a,

n

> - B (Ptotal) (39)

S.t.

where (3 is a known constant. Obviously, (39) is concave and
its feasible set is convex, hence it can be solved using stan-
dard optimization algorithms like the interior point method.
Nonetheless, (39) has a specific structure that can be exploited
to develop a low complexity solution. The standard approaches
are computationally intensive especially that solving (39) is
repeated in each iteration of Algorithm 3.

Algorithm 3: EE max. for p

1 Initialize parameters: ¢ > 0, 5 =0, F > e.
2 while F > ¢ do

K
3 | p*=argmax log, (1 + Z"%%pw") — B (Piotal)s
s.t. (38b), (38¢);
4 F=
K *
log, (1+ Zizier) — 5 (UL v pg + o),
where ¢ = ZKzl Pygy + Pps + LP ;
log, (1+72’“:01sz%
I
6 end

In the following, we propose a low-complexity optimal
solution for (39) to reduce the computational load since
Algorithm 3 requires solving (39) many times. Let F' =

log, (1 + M — B (Protal)> then the partial derivative
of I w.r.t. py is calculated as
OF
gr _ L —Buit. (40)
9k (In 2)(X iz piai +03)
By setting OF/dpy, = 0, we get
P =1/(Bv; ' In2) = O _pigi +02)/ax.  (41)

i#k
We calculate pj; assuming all the remaining p;V i#k values
are fixed, and this process is repeated until convergence. On
this basis, the proposed low-complexity algorithm goes as
follows: we first allocate the minimum required power for
each user; then, we update the power for the users one by
one as illustrated in Algorithm 4; this update continues until
convergence. Note that the convergence is guaranteed since
F' increases or remains unchanged after each update, and F'
has an upper bound. Moreover, the obtained local optimum is
also the global optimum since the cost function F' in (39) is
concave. p‘,?i“ and pp® in Algorithm 4 are calculated for each
user according to its boundaries as in the constraints in (38c).

B. Optimizing the IRS coefficients vector w given p

In this subsection, we discuss the step of optimizing the
IRS coefficients vector, w, given the transmit power vector
p for the sake of maximizing the EE of the NOMA system



Algorithm 4: Low complexity and fast iterative solu-
tion for solving step 3 in Algorithm 3

1 Initialize: Set p,, = pP"", k=1,2,...,K;
while 1 do
Pold = P3
for k = 1:K do
Py = 1/(Bry ' In2) — (5,4 piai + o) /ay;
if p;; < py" then
| pe ="
end
if py > pj** then

‘ max .

Px =P s

2
3
4
5
6
7
8
9

end )

if pi''" < py < pj* then
13 | pe =0

end

end

if |pois — p|< 10710 then
17 | break while loop;

end

using the alternating maximization algorithm. Both the SDR
and the manifold optimization-based solutions are presented
in this subsection like the case of the total power minimiza-
tion problem in Sec. III. Unlike the total transmit power
minimization problem, in the EE maximization problem, we
have a direct objective function of w to be maximized when
optimizing the coefficients vector w for a given p. When
maximizing the objective function in (37a) with respect to
w, the denominator is neglected because it is considered a
constant as it is not a function of w. Hence, we only focus on
the numerator, which is the log function. Moreover, the log
function is monotonically increasing, so we can only focus
on maximizing its argument. Therefore, when considering the
SDR optimization scheme using the same mathematical steps
as in Sec. III-B1, the NOMA EE maximization problem in w
can be written as

K

max Y pe(irace{By W) + o) @2a)
k=1

st pr(trace{By W} + |vg|?) — (288" — 1)
K ~
x| 2 piltrace{B; W+ [uo;") + 07| =0, %,
j=k+1
(42b)

(17¢), (17d),

where W=ww# and W is defined in (16). Similar to the
SDR problem in (17), the problem in (42) is an SDP which
is non-convex due to the non-convex rank one constraint in
(17d). By dropping (17d), (42) becomes clearly convex which
can be directly solved using optimization tools such as CVX.

We can also use the manifold optimization scheme to opti-
mize the IRS coefficients vector, w, given p when maximizing
EE. As discussed in Sec. III-B2, the unit modulus constraints
on the elements of w restrict the feasible region to the complex
circle manifold M. Hence, the EE manifold optimization
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problem can be written as

K
TH 2 43
max ;pﬂg KW+ U, (43a)
st. Cyp(w)>0, k=12,... K. (43b)

Following the same procedures as in Sec. III-B2, the problem
in (43) is transformed to an unconstrained manifold optimiza-
tion problem using the exact penalty method. Then, we shall
use the same smoothing technique as discussed in Sec. I1I-B2
to smooth the unconstrained penalized optimization problem.
Therefore, the smooth unconstrained NOMA EE manifold
optimization problem, in w given p, can be written as

max
weM

K K
> o |gTHyw + 'Uk’2 +p (Z P(—=Cr(w),u) |,
k=1 k=1
(44)

where P is the smoothing function defined in (25). Now, the
unconstrained problem in (44) is smooth and differentiable
which can be solved using the manifold optimization toolbox
as discussed in Sec. III-B2. The parameters p and w in (44)
are updated in the same way illustrated in Algorithm 1.

Surprisingly, as shown in the simulation results in Sec. VI,
we found that focusing on expanding the feasible set of the
problem in p by finding the beamforming coefficients vector w
that maximizes the minimum of the constraints Cj(w) is more
suitable for the EE maximization problem than maximizing
the EE objective function itself. This can be done by the
alternation between solving the problem (38) in p given w,
then solving the problem (26) in w given p in an iterative
manner. This approach is counter-intuitive as it optimizes
the IRS beamforming vector during the w sub-problem to
expand the feasible set of the power allocation problem in
(38) during the p sub-problem, rather than maximizing the
EE itself, which is the target of the problem. However, the
presented simulation results in Sec. VI show that this approach
gives way better EE performance than focusing on maximizing
the objective function discussed earlier in this section. The
reason behind this behavior is that we optimize the passive
beamforming vector, w, to expand the feasible region over
which the power allocation problem in (38) is optimized
during the alternating optimization algorithm. Therefore, when
maximizing the EE objective function in the power allocation
phase in (38), Algorithm 4 can search over a larger feasible
set to maximize the EE of the system, which may increase
the value of the obtained EE in the next iteration of the
alternation maximization algorithm. The procedures of the
proposed CCM-based alternation optimization algorithm for
the EE maximization problem are summarized in Algorithm
5.

V. COMPARISON WITH OPTIMIZED IRS-ASSISTED OMA

In this section, we discuss IRS-assisted uplink OMA. Since
IRS-assisted OMA is much simpler than the NOMA counter-
part in terms of optimizing the IRS phases, for fairness’ sake,
we compare our proposed IRS-NOMA scheme against IRS-
OMA to quantify the potential performance gains. Moreover,
we examine if the performance of the IRS-OMA scheme can



Algorithm 5: EE maximization alternation optimiza-
tion algorithm

1 Initialize iteration number: n = 0.
2 Initial feasible point: py, Wy.
3 while = > e do

4 Solve (39) in p, using Algorithm 4, given fixed
IRS coefficients matrix W,,_1;

5 Solve (26) or (44) in W, using Algorithm 1, given
fixed users’ power allocation vector py,;

6 Calculate = = FE(pn, Wy,) — EE(pPrn-1, Wy—1),
where EE(p, W) is defined in (37a);

7 n—n-+1;

8 end

9 Return: p*, W*.

outperform the IRS-NOMA one in any specific cases so we
can make a useful conclusion on when one of them is favored
over the other. To this end, we study the average transmit
power minimization and EE maximization problems for the
IRS-OMA scheme, as we did in the NOMA scheme, and
provide an optimal solution for both problems.

A. IRS-assisted OMA power minimization

In this subsection, we present an optimal solution for
minimizing the average transmit power of OMA users when
assisted by IRS. The sum transmit power is minimized while
having minimum uplink rate constraints for the users. In OMA,
each user takes a fraction of the time frame to transmit its data.
Unlike NOMA, in IRS-assisted OMA, each user transmits its
data separately within its allocated time fraction, ay, while
other users remain idle. The time fraction coefficients, o, are
optimized along with the transmit powers, py, to minimize the
average transmit power of the users. This optimization problem
can be expressed as

K
Cgu;lk ; QpPk (45a)
st pp < P (45b)
PrCk min
aklog2<1+ 5 >>Rk , k=1,2,...,K,
" (45¢)
ap >0, (45d)
K
k=1

where cp=|g? Wihy+vi|? and P™%* is the maximum al-
lowable uplink transmit power for the users. As long as
the users send their data separately during their allocated
time, the IRS adjusts its phase shifts, Wy, independently of
each user according to the corresponding channel vector, hy,
as each user experiences an interference-free channel. The
IRS phase shifts are chosen so that all the elements of the
cascaded user-IRS-BS channel, hy;w;g;Vi, are aligned to have
the same phase which is the phase of the direct channel vy, i.e.,
0;=0,, —04,—0h,,. To minimize the average transmit power
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of the OMA users, the minimum rate constraints in (45¢) is
satisfied with equality to reduce p; as much as possible. When
the constraints in (45c) are satisfied with equality, the power
of each user pj can be expressed in a closed-form as

0'2 min

pp =0 (2Rk fox _ 1) . (46)
C
By eliminating p; from (45a), (45) can be reduced to
K o2a i
min Z _nk (2Rzm/ak - 1) (47a)
g b1 Ck

s.t.  (45b), (45d), (45¢). (47b)

The feasible set of the optimization problem (47) is clearly
convex since the constraints (45d) and (45¢) are affine in .
Now, we need to check the convexity of the objective function
in (47). The objective function is separable in ay’s, i.e. it
can be written as a sum of separate terms in oy, o, ..., QK.
Therefore, the Hessian matrix of (47) is diagonal as %{g‘;‘j =
0, k # j, where f,mn, is the objective function in (47). Since
the Hessian matrix is diagonal, its eigenvalues are the diagonal
elements themselves, which can be calculated as

2 2 min\2 .
0 fogm _ &%2@:““/%), (48)
O0aj, Ck Qg
9 foma

where is the second partial derivative of f,,,, W.r.t.
k. Clearlyf the second derivatives in (48) are always positive
over the feasible set of (47) since «ay’s are non-negative.
Consequently, (47) is strictly convex since it has a convex
feasible set as well as a convex objective function, then it
can be efficiently solved using CVX or MATLAB’s fmincon
function in the optimization toolbox.

a2

B. IRS-assisted OMA EE maximization

In this subsection, we present the EE maximization problem
of the OMA system and propose an optimal solution for
it. The EE maximization problem is solved under minimum
uplink data rate constraints for the users. The EE maximization
problem of the OMA system can be formulated as

S, axlogy (1+ 22
max 74 = (49)
Pk Zk:l OkPk
st (45b), (45¢), (45d), (45¢).

Assuming that c; is greater than the values of ¢, of other
users, then we focus on allocating all the excess power to user
1, i.e., increasing p;, while the powers of the other users are
chosen to satisfy their minimum rate constraints with equality.
Therefore, the EE maximization problem reduces to

o logy (14 Bgt) + 40, Ry
max = : (502)
o K Rmin o2
BPL oy +Zk:2 ag |:2 min oy 1:| 2
st arlog, (1 + pfl) > Ry, (50b)
Jn

(45b), (45d), (45¢).



Problem (50) is solved using alternating maximization over p;
and «y, iteratively until convergence. It can be readily proved
that the problem in (50) is concave w.r.t. p;. However, (50)
is quasi-concave in ¢y, since the numerator is affine and the
denominator is convex w.r.t. o as proved in the previous
subsection. Therefore, the Dinkelbach algorithm discussed in
Sec. IV-A can be used to solve (50) w.r.t. ay.

VI. SIMULATION RESULTS

In this section, we provide extensive simulation results to
validate the proposed optimization algorithms for IRS-assisted
uplink NOMA systems. The proposed solutions are compared
against the IRS-assisted OMA under different scenarios. For
each optimization problem, we compare the performance of
the proposed manifold algorithm against three SDP-based
benchmarks, which are SDR, SDP-DC, and SROCR. Under
each scenario, we present the results in terms of the total
transmit power, EE, and the achievable uplink sum rate of the
proposed solution. Comparing these three system performance
measures of the total transmit power minimization problem
against those of the EE maximization problem reveals very
useful insights, which relate the two problems. The two
problems are solved and compared against each other under
two scenarios: the first is when low minimum target uplink
rates are required for the users, and the second is when
high minimum rate constraints are required for the users. The
number of users, K, in the NOMA cluster is assumed to be
3.

For fair comparison, similar simulation parameters to those
used in [6] and [36] have also been considered in this section,
which can be summarized as follows. The distance between
the BS and IRS is assumed to be d;yp = 75 m. The distances
between the 3 users and the IRS are 10, 20,40 m, whereas the
distances between the users and the BS are 30, 50, 200 m. The
path loss at the reference distance in (3) is ng = 1073, and the
path loss exponents for the direct links (users to BS), IRS to
users links, and BS to IRS link are assumed in this simulation
setup as apy = 5.5, ajy = 2.2, and ap; = 2.2, respectively.
The noise power JZ is set to be —114 dBm, and the Rician
factors in (1) and (2) are set to be K;p = Ky = 2.2. The
maximum transmit power constraint, P™*, in (37b) is set to
10 dBm in the case of low minimum rate constraints, and
25 dBm in the case of high minimum rate constraints for the
users.

A. NOMA vs. OMA for low minimum rate constraints

In Fig. 2, we present the total transmission power of the
users versus the number of reflecting elements at IRS for dif-
ferent schemes. Low QoS constraints at the users are assumed
in Fig. 2 where the minimum target achievable rates at the
users are set at 0.2 bits/sec/Hz. We compare the performance
of the proposed scheme against SDR, SDP-DC, SROCR, and
the IRS assisted OMA scheme. The results of the IRS-OMA
scenario are included when optimal time allocation (OTA)
and uniform time allocation (UTA) are adopted. The figure
shows that our proposed optimization scheme outperforms
SDR, SDP-DC, and SROCR, although the complexity of the

13

Power min, Man-Opt
—&— Power min, SDR
———— Power min, SDP-DC
—©6— Power min, SROCR

---------- EE max
T OMA power min, OTA | 7
OMA power min, UTA

OMA EE max

Total power (dBm)

70

Figure 2: Sum power vs. No. of reflectors L, Rj*™=0.2 bits/sec/Hz

three benchmarks is much higher than the complexity of the
proposed algorithm. Fig. 2 also shows that the IRS assisted
OMA scheme outperforms the NOMA scheme for the case of
low minimum target rate requirements for the users, hence, the
IRS-OMA scheme is preferable in this case. The graph also
compares the total transmit power of the users resulting from
solving the sum power minimization problem against the total
power resulting from solving the EE maximization problem for
both NOMA and OMA cases. Clearly, and as expected, the
graph shows that the sum power curve of the EE maximization
problem is higher than the total power resulting from the power
minimization problem. The rationale behind this is that the EE
objective function, in (38a) for the NOMA case or in (49) for
the OMA case, is pseudo-concave with respect to the transmit
power vector p. Hence, when the target uplink rate constraints
are low, the minimum transmit powers of the users must be low
too, which makes the system’s EE far from the maximum EE
point of the pseudo-concave objective function. Therefore, in
the case of low rate constraints, moving towards the maximum
EE point requires increasing the transmit powers of the users
above the minimum. That is why the power consumption in
the case of NOMA/OMA EE maximization is higher than that
in the case of total transmit power minimization.

Fig. 3 shows the performance of the proposed EE maxi-
mization solutions using the proposed CCM based alternation
maximization algorithm in Algorithm 5 discussed in Sec.
IV. The IRS assisted NOMA EE maximization problem is
solved by optimizing p given fixed w using the proposed low
complexity Algorithm 4, and then optimizing w given fixed
p alternately using the alternation maximization algorithm.
When solving for w given p, we compare the proposed
manifold optimization based feasibility expansion scheme,
discussed in Sec. IV-B, against the SDR, SDP-DC and SROCR
benchmarks. The figure shows that the proposed manifold op-
timization algorithm, when applying the feasibility expansion
(FeEx.) mechanism discussed in Sec. IV-B, outperforms the
three benchmarks, although it has much lower complexity. The
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figure also confirms that the proposed feasibility expansion
mechanism provides far better performance by solving (26)
than maximizing the EE cost function using (44). The pro-
posed CCM based feasibility expansion (FeEx.) mechanism in
Algorithm 5 outperforms the existing SDP based counterparts
because it optimizes the original optimization vector, w, on
the original feasibility region as in (26). On the other hand,
SDP based schemes like SDR, as in (42), broaden the original
feasibility region, encompassing a larger set, W, which is
the outer product of the original optimization vector. When
the optimal solution obtained on the larger set, in the SDP
algorithms, is projected back on the original feasible region
through Cholesky decomposition, the results may deviate from
the optimal solution to the original problem, which causes
performance reduction compared to the proposed CCM-based
approach. Moreover, since the problem (37) focuses on maxi-
mizing the EE of the system, it is expected that the EE resulted
from (37) is higher than the EE resulted from solving the sum
power minimization problem in (8). This is because problem
(8) only focuses on minimizing the transmit powers of the
users without paying any attention to the EE metric, while in
the EE maximization problem (37), the users are permitted
to increase their transmit powers and hence, increase their
uplink data rates accordingly above the minimum target rates
to increase EE.

Fig. 4 compares the EE of the IRS assisted OMA scheme
against the EE of the NOMA counterpart for the case of low
minimum uplink rate constraints at the users. The graph shows
that the resulting EE of the OMA scheme largely beats the
EE of the NOMA scheme in the case of low uplink QoS
requirements at the users. Fig. 4 also shows that optimizing
the time allocations of the IRS assisted OMA scheme, by
solving problem (49) in Sec. V-B, results in higher EE than
the regular OMA scheme with equal time fractions among the
users. The figure also compares the resulting EE of the OMA
scheme when the objective is minimizing the total transmit
power against the EE resulting from maximizing the EE of the
system. Intuitively, the resulting EE of maximizing the OMA

14

9 T

NOMA EE max

— — —OMA, power min
—+— OMA EE max, OTA
——— OMA EE max, UTA

EE (bits/mJoule)

60 70

L .
Figure 4: Comparing OMA and NOMA EE, R};""=0.2 bits/sec/Hz

5

45

Power min (NOMA/OMA)
— — — EE max, FeEx )
OMA EE max

4

S} w
wn w n

Sum rate (bits/sec)

70

L .
Figure 5: Sum rate vs. No. of reflectors L, R;""=0.2 bits/sec/Hz

system’s EE is higher than the resulting EE of minimizing
the OMA total transmit power. This is because the OMA
EE objective function in (49) is pseudo-concave with respect
to the transmit power vector p. When the target uplink rate
constraints are low, the users transmit at low power levels in
the case of total transmit power minimization, which makes
them far from the maximum EE point. Therefore, in the case
of OMA EE maximization, the users increase their transmit
powers moving towards the maximum EE point of the OMA
system. However, in the case of minimizing the total transmit
power, we only focus on minimizing the transmit power as
much as possible by satisfying the minimum target uplink rates
with equality while neglecting the EE aspect.

In Fig. 5, we depict the attainable sum rates of the users
within the system, attained by solving both the sum power
minimization and the EE maximization problems in (8) and
(37), and their OMA versions (45) and (49), respectively.
When addressing the total transmit power minimization prob-
lem in a NOMA/OMA system, each user precisely meets the
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required minimum uplink rate with equality. This outcome
aligns with intuition, as the primary objective is to minimize
the transmit powers of users as much as possible in this
scenario. In contrast, when tackling the EE maximization
problem in a NOMA/OMA system, users have the flexibility
to transmit at higher power levels, achieving elevated uplink
data rates to maximize the overall EE of the system. As
illustrated in Fig. 2 and discussed in the paper, the EE cost
functions for NOMA and OMA, represented by equations
(38a) and (49), respectively, exhibit pseudo-concavity with
respect to the transmit power vector, p. Consequently, when
the constraints on target uplink rates are low, users increase
their transmit power, moving towards the system’s maximum
EE point. As a result, the achievable uplink data rates of users
surpass the target minimum rates when addressing the EE
maximization problem for both NOMA and OMA systems.
This behavior underscores the adaptive nature of users in
response to EE maximization, allowing them to dynamically
adjust their transmit power levels to optimize system-wide EE.

Fig. 6 compares the convergence behaviours of the al-
ternation optimization algorithm using the proposed mani-
fold optimization technique against the different SDP-based
benchmarks that we use in this paper. The figure shows the
convergence curves of both the sum power minimization and
the EE maximization problems. The graph shows that the
proposed alternation optimization based manifold optimization
algorithm converges after few iterations, and faster than the
shown benchmarks, when solving the two considered opti-
mization problems. These results confirm the convergence of
the proposed alternation optimization algorithm in Sec. III-C.

Fig. 7 compares the time complexity of the proposed CCM
algorithms in Algorithm 2 and Algorithm 5 against the SDR
benchmark for solving the sum power minimization and the
EE maximization problems, respectively. The figure compares
both techniques for both the low and high rate constraints
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Figure 7: Time complexity of sum power and EE optimization
using proposed manifold vs. SDR based techniques

cases for the sake of completeness. We plot the average run
time per iteration for each optimization algorithm against the
number of IRS elements. Clearly, the figure shows that the
average convergence run time of the proposed CCM based
optimization algorithm is far less than the average run time of
the SDR benchmarks for both the sum power minimization
and the EE maximization problems. These results yield a
huge time complexity reduction for our proposed CCM based
algorithm against the SDP-based benchmarks like SDR, which
confirms the presented complexity analysis in Sec. III-D.
Furthermore, we can notice from Fig. 7 that the proposed
CCM algorithm has a slightly less time complexity in the low
rate constraints case than the high rate case. This result makes
sense since the high rate constraints make the feasible region
tighter than in the low rate case, which causes the CCM to
take a longer duration in searching for an optimal feasible
solution. However, the difference between the low and high
rate cases is nearly insignificant for the SDR benchmark. Fig.
7 also shows the time complexity of the IRS-OMA scheme
discussed in Sec. V. It is noticeable from the graphs that the
average convergence time of either power minimization or EE
maximization of IRS-OMA does not increase with the number
of IRS elements, L. This observation is anticipated since the
IRS-OMA scheme does not include phase shifts optimization
at IRS because they already have a closed-form solution. The
complexity of the IRS-OMA power minimization is very low
as shown in the figure since it is only limited by solving the
low complexity problem in (47). However, the time complexity
of the EE maximization of IRS-OMA is relatively high since
it is determined by solving (50), which involves alternating
optimization that includes applying the Dinkelbach algorithm
in every step, raising the complexity of the whole algorithm.

B. NOMA vs. OMA for high minimum rate constraints

In the next figures, we show the performance of the pro-
posed solutions to both the total transmit power minimization
problem and the EE maximization problem when the minimum
target uplink rates are high. We assume that the required
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minimum transmission rate for each user is 2.5 bits/sec/Hz.
We will show how the two optimization problems are related
when the uplink rate constraints of the users are high.

Fig. 8 presents the relationship between the total uplink
transmit power of users and the number of reflecting ele-
ments for various schemes. The proposed manifold scheme
is compared against benchmarks such as SDR, SDP-DC, and
SROCR, as well as an IRS-assisted OMA scheme. Simi-
lar to the scenario with low rate constraints, the manifold
optimization-based approach in (26) outperforms the three
benchmarks in the high rate constraints case too, all while
maintaining significantly lower computational complexity. In
contrast to the low rate constraints scenario, Fig. 8 reveals
that the IRS-NOMA scheme in (8) surpasses the optimized
IRS-OMA scheme in (45) when there are high minimum
rate requirements for users. This implies that IRS-NOMA is
more favorable than IRS-OMA when dealing with stringent
minimum target rate constraints. Additionally, Fig. 8 com-
pares the total transmit power of the users resulting from
solving the sum power minimization problem against the total
power from solving the EE maximization problem for both
NOMA and OMA cases. Interestingly, in cases with high
rate constraints, the sum power curve resulting from solving
the EE maximization problem (37) perfectly coincides with
the sum power curve from solving the total transmit power
minimization problem (8). This behavior is explained by the
pseudo-concave nature of the NOMA EE objective function
in equation (38a) with respect to the transmit power vector p.
Consequently, when the target uplink rate constraints are high,
the minimum transmit powers of the users must also be high,
exceeding the maximum EE point. Therefore, in scenarios with
high rate constraints, moving towards the maximum EE point
requires decreasing the transmit powers of the users. Hence,
maximizing EE directly leads to minimizing the total transmit
power of users, resulting in the overlapping of both solutions.

Fig. 9 shows a performance comparison between the pro-
posed EE maximization solutions using the alternating max-
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imization scheme discussed in Sec. IV for the case of high
uplink rate requirements at the users. Similar to the case
of low rate constraints at the users, the figure shows the
performance gain of the obtained EE using the proposed
manifold optimization over the SDR, SDP-DC and SROCR
benchmarks. It is clear from Fig. 9 that the EE resulting
from minimizing the total transmit power by solving (8) is
exactly the same as the EE resulting from maximizing the EE
of the system by solving (37). This supports the results and
discussion of Fig. 8 since we found that the EE maximization
problem coincides with the total transmit power minimization.
Therefore, the two problems lead to the same EE values in the
case of high uplink rate requirements.

VII. CONCLUSIONS AND FUTURE WORK

In this article, we proposed efficient solutions to the sum
power minimization and the EE maximization problems for
IRS-assisted uplink NOMA networks. The two problems are
solved by jointly optimizing the users’ uplink transmit powers
and the IRS passive beamforming coefficients using alternating
optimization-based algorithms. During the passive beamform-
ing sub-problem, we showed that the proposed manifold
optimization solutions have significant performance gains and
are far superior to the SDR benchmark solutions. Additionally,
we compared our solutions for the IRS assisted NOMA system
with the IRS-assisted OMA counterpart.

The simulation results indicate that NOMA exhibits superior
performance over OMA when the users’ uplink data rate
requirements are high. Conversely, OMA is more favorable
when the rate requirements are low. This behavior can be
attributed to the fact that there is an optimal closed-form
solution for the phase shifts of IRS elements with OMA
signaling, which provides some performance gain over IRS-
NOMA. This gain might overwhelm the gain obtained by IRS-
NOMA when the minimum data rate requirements are low
because the spectral efficiency gained by NOMA signaling is



negligible under these operating conditions as the achievable
rate of the near user is much higher than the other users. On
the other hand, when the minimum rate requirements are high,
the achievable rates for all users will be comparable, which
implies that the system operates in the mid-capacity region in
which NOMA signaling has a superior gain. This conclusion
does not actually undermine the benefits of IRS-NOMA since
it can be used in applications that require relatively high data
rates such as UAV communications and IoT data collection
points. On the other hand, IRS-OMA is useful for low-rate
applications such as wireless sensor networks (WSN).

In future work, it is worth investigating the performance
of the developed low-complexity CCM based algorithm to
optimize uplink NOMA systems with multiple antennas at the
BS. It will be interesting to alternatively optimize the IRS
phase shifts, using the CCM algorithm, the transmit powers
of the users, and the NOMA receive beamforming vector.
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