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Abstract—This article investigates the performance of
intelligent reflective surfaces (IRS)-aided physical layer network
coding (PNC) in two-way relaying channels (TWRC). Specifically,
IRS is used to eliminate carrier phase offset (CPO) at the
relay node. To this end, the IRS reflectors’ phase shifts are
optimized to align the received signals from two source nodes
at the relay. This facilitates using a simple mapping function at
the relay to map the superimposed signal to a network-coded
signal. Two scenarios are considered, the first of which assumes
that each source node is served by a separate IRS panel, while
the second scenario considers the more challenging case where
only one IRS panel is available for the two source nodes. In
the latter case, the IRS panel is seen by both source nodes
and its phase shifts are optimized to mitigate the CPO problem
while maximizing the received signal amplitude at the relay. This
optimization problem is formulated and solved over the complex
circle manifold. Finally, we extend the IRS-assisted PNC system
to include channel coding and higher modulation orders, for
which a repeat accumulate (RA) channel-coded IRS-aided PNC
scheme is proposed for general quadrature amplitude modulation
(QAM) signals. A belief propagation (BP) based algorithm is
designed to decode the network-coded sequences over a q-Ring
using modular arithmetic. Our simulation results validate the
theoretical error expressions derived for the two-IRS scenario
as well as the efficacy of the proposed manifold optimization
approach for the one-IRS scenario. The results also confirm the
efficacy of the designed channel-coded IRS-aided PNC using high
QAM modulation orders.

Index Terms—Physical layer network coding, two-way relaying
channels, intelligent reflective surfaces, repeat accumulate codes,
sum-product algorithm, belief propagation.

I. INTRODUCTION

The application of physical layer network coding (PNC)
in two-way relaying channel (TWRC) has attracted much
interest by the wireless communications community during
the past decade. PNC can effectively enhance the throughput
of wireless networks by exploiting the broadcast nature of the
wireless medium and mapping the superimposed signals at the
relay during the multiple access (MA) stage to other versions
of source messages, e.g., XOR or some linear combination
of the original messages. In the broadcast stage, the relay
forwards the network-coded signal to the source nodes so
that every node can extract its intended message from the
other node. PNC has been widely studied in various wireless
scenarios such as non-orthogonal multiple access (NOMA) in
5G networks, random-access networks, and cognitive radio,
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where it has been shown to achieve substantial throughput
improvement over conventional techniques [1]–[4].

Recently, intelligent reflective surfaces (IRS) have emerged
as a promising technology for wireless systems [5]–[8]. IRS is
a planar surface that consists of a large number of adjustable
and low-cost passive elements. These elements are able to
reflect the incident signals after controlling their amplitudes
and phase. The IRS technology is rising since it can be
an effective solution for improving the spectral and energy
efficiency of wireless networks [9]. The core characteristic of
IRSs lies in their ability to customize the wireless channel
from the transmitter to the receiver to achieve different design
purposes like signal strengthening and interference mitigation.
Therefore, and because of the aforementioned advantages, the
IRS has been extensively studied in the literature during the
past few years and has been applied in many application sce-
narios. For example, many works investigated the application
of IRS in multi-user systems such as [10]–[13]. Other works
have studied the application of IRS in non-orthogonal multiple
access (NOMA) networks where the IRS can be optimized to
maximize the sum-rate of the system whether in the uplink
[14], or in the downlink [15], [16]. Other applications to the
IRS were investigated in other contexts such as wireless infor-
mation and power transfer [17], [18], unmanned aerial vehicles
(UAV) communications [19], and physical layer security [20].
With all the aforementioned applications, the IRS has been
considered as one of the vital enabling technology for the
upcoming six-generation (6G) wireless networks [21].

A. Related Work

Several works in the literature were proposed to provide
practical solutions to the carrier phase offset (CPO) problem
between communicating nodes in PNC. The CPO problem
results from the phase difference between the random fading
channels between the end nodes and the relay. In several
works, dealing with the PNC asynchronies, including the CPO
problem, is done in the context of channel-coded PNC, where
the two end nodes in the TWRC simultaneously send channel-
coded packets to the relay. The relay decodes the codewords
from two sources in the superimposed signals in the MA
stage. The main challenge here is how the relay decodes
the superimposed codewords and deduces the network-coded
sequence of the raw data at both end nodes, which contains
the necessary information. The authors in [22] investigated
the symbol misalignment as well as CPO problems in TWRC
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PNC, integrating channel coding with PNC. They proposed
a general framework for jointly decoding the two packets
at the relay, which can effectively deal with asynchronies
while incorporating channel coding at the same time. The
authors in [23] integrated irregular repeat accumulate (IRA)
channel coding with TWRC PNC where both end nodes apply
quadrature phase shift keying (QPSK) or pulse amplitude
modulation (PAM). They proposed a linear modulation coding
scheme to compute linear combinations of the data at the
relay in a block fading channel by appropriately choosing the
network coding coefficients in a way that best approximates
the channel fading coefficients. A heterogeneous PNC scheme
over a TWRC was designed and analyzed in [24], where the
source nodes use different modulation orders according to their
channel and traffic conditions. To overcome the CPO problem,
the authors proposed an adaptive mapping function at the
relay that changes based on the relative difference between
the fading coefficients of both sources. The authors in [25]
also proposed an adaptive PNC mapping scheme at the relay
according to the channel conditions which greatly reduced the
impact of MA interference. Their design was based on that
every network coding map must satisfy the exclusive law by
representing the maps by a 16-sides Latin square.

The authors in [26] derived lower and upper bounds on the
symbol error rate (SER) of asynchronous PNC considering
both phase and symbol misalignment. In [27], multiple soft-
decision iterative decoding schemes for PNC, operating with
coded modulation (CM) and bit-interleaved coded modulation
(BICM), were proposed. The authors in [28] presented some
non-linear equalization approaches for PNC systems suffering
from frequency selective fading channels aiming at mitigating
the distortions induced by the channel. In [29], the authors
designed a joint decoding scheme at the relay for channel
coded heterogeneous modulation PNC. Their decoding scheme
was built on designing adaptive bit-level mapping functions
which were optimized according to the two source-relay
channel coefficients in the TWRC. In [30], a PNC design for
network multiple-input-multiple-output (MIMO) was proposed
to address the issue of high user densities in 5G networks.
The proposed design criteria were set to ensure that the PNC
mapping functions used at each access point overcome the
singular fade states and ambiguities induced by the fading
channels. The authors in [31] studied coherent detection for
PNC with short packet transmissions in a TWRC operated with
binary frequency shift keying (BFSK) which is less sensitive
to CPO and requires less channel knowledge at the relay.

B. Motivations and Contributions

Motivated by the above works, this paper is an attempt to
address the critical problem of CPO between PNC nodes by
exploiting the IRS technology. As the number of reflectors
in an IRS panel increases, the effect of multi-path fading
diminishes because the IRS elements introduce certain phase
shifts, in the form of beamforming phases to the signal rays
to make them constructively add at the relay. This concept is
similar to channel hardening in massive MIMO systems. To
this end, we study the IRS-aided PNC system in a TWRC

scenario. Firstly, we study an IRS-aided PNC scenario where
two IRS panels assist the transmission, each is seen by only
one end node in TWRC. Every IRS panel, in this scenario, is
responsible for adjusting the fading channels of the specific
node that sees it. A detailed approximate error performance
analysis, considering the use of binary phase shift keying
(BPSK) modulation at both end nodes, is provided for this
scenario using the central limit theorem (CLT). The optimum
detector is derived for this scenario and the corresponding ap-
proximate error probability is calculated for the IRS-adjusted
fading channels at the relay.

Second, we move on to the more challenging scenario
where only one IRS panel exists in the TWRC and is seen
by both end nodes. In this scenario, the phase shifts of the
IRS panel are optimized to jointly align the phases of the
channels of both end nodes while maximizing the aggregate
received signal amplitude at the relay to minimize the detection
error probability. The optimization problem is formulated as
a constrained maximization problem over the complex circle
Riemannian manifold and then solved using an exact penalty
method. Finally, we discuss the application of the presented
IRS-aided PNC scenarios in practical communication systems
where channel coding and high modulation orders are re-
quired1. We use q-ary repeat accumulate (RA)-channel-coded
sequences over the ring R = Z/qZ at both end nodes, where q
is the modulation order and Z is the group of integer numbers.
Because of aligning the two received signals from the end
nodes due to the use of IRS, q can be any power of 2, which
is suitable for practical communication systems. To the best
of our knowledge, this work is the first attempt to deal with
practical channel-coded PNC with high modulation orders in
a fading TWRC. In [23], the authors presented modulation-
coded PNC with high modulation orders to produce q-ary
signals. However, they were forced to only use prime q values
to be able to avoid ambiguity in dealing with the Rayleigh
fading TWRC scenario. On the other hand, in our IRS-assisted
PNC system, the IRS could cancel the channel fading effect,
so we could use any practical value of q, i.e., powers of 2.
A joint channel-network decoding algorithm is proposed to
decode network-coded packets over the q-ring R at the relay.
The decoding algorithm is based on the iterative sum-product
algorithm, where we derive the necessary update rules that
are required to be applied in each iteration. Simulation results
are provided at the end to verify the theoretical analysis and
depict the performance gains of the proposed schemes. The
contributions of this work are summarized as follows:

1) A detailed approximate CLT-based mathematical analy-
sis is performed, assuming BPSK at both end nodes, for
the two-IRS aided PNC scenario, to derive an expression
for the probability of XOR (of the two source nodes’
data) detection error at the relay.

2) Formulate and solve an optimization problem of the
phase shifts of the IRS panel in the more challenging
IRS scenario where the two end nodes use the same
IRS panel. The optimization problem is formulated and

1It should be noted here that the available literature on PNC in the context
of TWRC has mostly focused on BPSK modulation and/or uncoded systems.
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Figure 1: IRS aided PNC in TWRC (double-IRS scenario)

solved over the complex circle Riemannian manifold
using manifold optimization tools.

3) Design a joint network-channel decoding scheme based
on the sum-product algorithm to decode a network-
coded message sequence from a superimposed RA-
channel-coded q-ary sequences at the relay. The decoder
exploits the IRS-adjusted received symbols at the relay
to efficiently decode the superimposed codewords which
are encoded over the ring R = Z/qZ.

The rest of the paper is organized as follows. In Sec. II, the
IRS-aided TWRC system model is presented, while in Sec.
III, the error probability of the adopted transmission scheme
is analyzed. An efficient manifold-based optimization scheme
is presented in Sec. IV to optimize the phase shifts of a single-
IRS-assisted PNC in a TWRC scenario. In Sec. V, we discuss
the design of channel-coded IRS-assisted PNC along with the
associated decoding algorithm when higher order modulations
at both end nodes are used. Finally, simulation results and
conclusions are given in Sections VI and VII, respectively.

II. SYSTEM MODEL

In this article, we propose an IRS-assisted PNC scheme in
a TWRC, where two end nodes want to exchange information
using a middle relay node. The IRS-aided PNC system model
adopted is shown in Fig. 1, where a separate IRS panel exists
on each side of the relay to adjust the uplink channels of
the corresponding end node. Every end node can see the IRS
panel near to it. Every IRS panel has L reflectors where each
of them introduces a different phase shift, ejθi , to the reflected
signal ray. Let the two end nodes be denoted as A and B, and
they want to exchange messages with the help of the relay
node NR. All the nodes are assumed to operate in half-duplex
mode, i.e., the nodes cannot transmit and receive at the same
time. In the TWRC, both end nodes can transmit their data to
the relay node with the help of the IRS panel.

The direct node-relay channels are assumed to be inde-
pendent and identically distributed (i.i.d.) Rayleigh fading
channels, and they are denoted as vA and vB for node A
and node B, respectively. The IRS-relay channel vectors are
denoted as gA and gB ∈ CL×1 for node A and node B
respectively, and they are given as

gm =
√
pl(dIm,NR

)gRay
m , m ∈ {A,B} (1)

where dIm,R is the distance between the IRS and the relay,
and gRay

m represents the Rayleigh fading component whose el-
ements are i.i.d. complex normal, CN (0, 1), random variables.

The end node-IRS channel vectors are denoted as hA and
hB ∈ CL×1 for A and B respectively, and they are given as

hm =
√

pl(dm,Im)hRay
m , m ∈ {A,B} (2)

where dm,Im is the distance between the end node and
its associated IRS panel, and hRay

m represents the Rayleigh
fading component whose elements are i.i.d. complex normal,
CN (0, 1), random variables.

The pl factor in the channel model represents the path loss
which is modeled for all the channels as

pl(d) = η0

(
d

d0

)−α

, (3)

where η0 is the path loss at the reference distance d0 = 1 m,
d represents the link distance between the transmitter and the
receiver, and α is the path loss exponent. Since the IRS panel
is typically set up in a position where a strong path to the relay
and to the end node can exist, the path loss exponents of the
IRS-relay and the node-IRS links are typically higher than the
path loss exponent of the direct node-relay links. Additionally,
as shown in Fig. 1, we assume that our system model is located
in a harsh environment where the direct node-relay channels
suffer from blockages, hence the IRS pannels are used to assist
the communication. Consequently, the path loss exponent of
the direct node-relay channels is assumed to be much higher
than the path loss exponent of the node-IRS-relay links.

The information exchange scenario between node A and
node B consists of two stages, namely the MA stage and the
broadcast (BC) stage. In the MA stage, the two source nodes
simultaneously transmit their data symbols to the relay node,
NR. Hence, the relay receives a superimposed signal which
is a linear combination of the two source messages weighted
by the corresponding channel fading coefficients. Therefore,
the relay, NR, uses a mapping function to map the received
superimposed signal to a network-coded symbol which is then
broadcast to the end nodes during the BC phase. For example,
the mapping function can be the XOR function. Assuming the
source nodes simultaneously transmit the information symbols
xA and xB , the received signal at the relay can be given as2

yR=(αA hT
AΘAgA+vA)

√
PAxA+(αBh

T
BΘBgB+vB)

√
PBxB + n,

(4)
where n denotes the additive noise which is modeled as
complex Gaussian with zero mean and variance σ2

n and Θ is a
diagonal matrix whose diagonal elements are the IRS reflect-
ing elements, i.e. Θ = diag{ejθm,1 , ejθm,2 , . . . , ejθm,L},m ∈
{A,B}, with θm,i ∈ [0, 2π] representing the phase shift
introduced by the i-th IRS reflecting element. The values
PA and PB represents the transmit powers of node A and
node B respectively. The two end nodes adjust their transmit
powers according to the overall node-IRS-relay channel gain.

2In our model, we assume perfect synchronization between the two trans-
mitting nodes, so that there is no symbol misalignment between xA and xB

[23]–[25], [28]–[30]. Some papers have focused on the asynchronous PNC
case; the interested reader is referred to [22], [32].
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The higher the node’s distance from the relay, the higher the
transmit power that the node consumes to equalize the average
received power of the two received signals. We will discuss
how PA and PB are adjusted to account for the different path
loss values seen by the two end nodes in the next section. The
IRS angles, θAi and θBi, are adjusted to cancel the overall
phase of the i-th path of the different copies of xA and xB ,
respectively, so that they arrive at the relay node having the
same phase, i.e., aligned. This is how the IRS panels can solve
the critical CPO problem between the two end nodes [22], [33]
in PNC TWRC systems. Therefore, the introduced phase shift
of the i-th reflector should be adjusted as θmi = −θhmi

−θgmi
,

m ∈ {A,B} ∀i. The relay can calculate all the IRS phase
shifts since we assume it has knowledge of the IRS channel
fading coefficients. 3 Then, the received signal at the relay
node can be written as

yR = (αA

L∑
i=1

|hAi||gAi|+vA)
√
PAxA

+ (αB

L∑
i=1

|hBi||gBi|+vB)
√

PBxB + n. (5)

The parameters αA and αB are attenuation factors at the IRS
panels which are adjusted to guarantee that the two received
signals at the relay have equal amplitude levels for efficient
PNC detection. In the next section, we discuss how these
factors are calculated. It must be noted that the attenuation
factor at the IRS panel is constant per all its reflectors and is
always less than or equal to one, i.e. αm ≤ 1, which guarantees
that the used IRS panels are passive. This type of IRS panels
is called ϵ-relaxed passive IRS whose elements are capable of
scaling the reflected signal by the same factor, between 1− ϵ
and 1, for all reflector elements [37]. In the following section,
we discuss the XOR-PNC mapping and detection in details
when BPSK modulation is used, then an approximate error
probability of the IRS-aided PNC system is derived.

III. ERROR PROBABILITY ANALYSIS OF THE IRS-PNC

In the previous section, we presented the IRS-aided PNC
scheme in a TWRC and how the IRS panels can be used
to mitigate the CPO problem caused by the wireless channel
fading coefficients. In this section, the probability of error
performance of the IRS-aided PNC scheme is studied, where
integral forms are derived to approximate the error perfor-
mance of the scheme. We assume in our analysis that both
end nodes, A and B, transmit BPSK modulation symbols,
i.e., xA and xB in (5) are carved from the set {1,−1}. In
the following, we are going to derive the optimal detector and
the corresponding probability of error for the XOR mapping
of xA and xB , denoted as dxor, at the relay node, conditioned
on the fading channel gains. Then the derived error probability
will be averaged over the distribution of the channels.

3This is widely accepted in the context of IRS-assisted communication [5]-
[20]. This assumption is valid since some works in the literature studied the
channel estimation/acquisition problem for the IRS assisted systems [34]–[36].

A. Optimal detector

In this subsection, we derive the optimal decision rule
assuming that no attenuation is done at the IRS panels to
equalize the amplitudes of the two received superimposed
signals, i.e., αA and αB in (5) are set to 1. Since we are only
interested in detecting the XOR mapping of xA and xB in
(5), then the optimal decision rule should only detect whether
xA and xB have same values (dxor = 0), or they are different
(dxor = 1). Hence, the optimal decision rule is given as

Pr(xA=1, xB=1|yR) + Pr(xA=− 1, xB=− 1|yR)
dxor=0

≷
dxor=1

Pr(xA=1, xB=− 1|yR) + Pr(xA=− 1, xB=1|yR). (6)

Assuming that γA =
∑L

i=1|hAi||gAi|+vA and γB =∑L
i=1|hBi||gBi|+vB in (5), then the received signal at the

relay can be expressed as

yR =
√
PAγAxA +

√
PBγBxB + n. (7)

Hence, the optimal decision rule in (6) can be reduced to

exp
{

−|yR−
√
PAγA−

√
PBγB |2

2σ2
n

}
+ exp

{
−|yR+

√
PAγA+

√
PBγB |2

2σ2
n

} dxor=0

≷
dxor=1

exp
{

−|yR−
√
PAγA+

√
PBγB |2

2σ2
n

}
+ exp

{
−|yR+

√
PAγA−

√
PBγB |2

2σ2
n

}
.

(8)

As we can see in (8), the decision rule of the optimal detector
is computationally complex as no simple thresholds can be
calculated to ease the detection process. Therefore, in the
next sub-section, we present an efficient sub-optimal detector
whose detection rule is based on simple thresholds. Then,
we will calculate the error probability that corresponds to the
presented sub-optimal simple detector.

B. Sub-optimal detector with error probability calculations

In this subsection, we provide a simple sub-optimal detector
to detect the XOR mapping from the received superimposed
PNC signal at the relay. In our IRS-assisted PNC system
model, there are L reflected rays from the IRS reflectors
coherently added at the relay node. This constructive interfer-
ence makes the reflected signal much stronger than the signal
coming from the direct link as L increases. Therefore, the out-
of-phase components of the two direct links, i.e. Im(vA) and
Im(vB), can be neglected to simplify the detection process.
Hence, the overall effective channels of the two transmitted
signals seen by the relay can be approximated as

γR
A=

L∑
i=1

|hAi||gAi|+Re(vA), γR
B=

L∑
i=1

|hBi||gBi|+Re(vB),

(9)
where γR

A and γR
B are the real components of γA and γB ,

respectively. The attenuation factors at the relay are adjusted
to equalize the amplitudes of the two received signals at the
relay. Specifically, if

√
PAγ

R
A <

√
PBγ

R
B , then αA is set to 1,

i.e. no attenuation, while αB<1 is chosen such that
√
PAγ

R
A =√

PB

(
αB

∑L
i=1|hBi||gBi|+Re(vB)

)
, and vice versa.

As long as the attenuation factors, αA and αB , in (5)
equalize the amplitudes of the two received signals at the relay
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from the two end nodes, then the received superimposed signal
at NR can be expressed as

yR = ΓxA + ΓxB + n, (10)

where Γ = min{
√
PAγ

R
A ,

√
PBγ

R
B}.

The proposed attenuation factors at the IRS panels, αA and
αB , may result in large power loss in unbalanced channels.
Specifically, if one of the two nodes (and its associated IRS)
is farther away from the relay than the other node, its channel
gain is expected to be much lower than that of the nearer
node. Consequently, the IRS of the nearer node must apply
a very small attenuation factor to align its signal with the
far node, which may lead to high power loss. To avoid this
problem, the two nodes adjust their transmit powers, PA and
PB , according to their average overall channel gains seen by
the relay. The expected value of the received amplitudes of
xA and xB should be equalized by adjusting PA and PA so
that E(

√
PAγ

R
A) = E(

√
PBγ

R
B). Since Re(vA) and Re(vB)

are Gaussian random variables with zero mean, then PA and
PB can be adjusted as√

PAE(
L∑

i=1

|hAi||gAi|) =
√
PBE(

L∑
i=1

|hBi||gBi|). (11)

By substituting gmi and hmi as in (1) and (2), the transmit
powers can be related as√

PA

√
pl(dA,IA)

√
pl(dIA,NR

)E(
L∑

i=1

|hRay
Ai ||gRay

Ai |) =

√
PB

√
pl(dB,IB )

√
pl(dIB ,NR

)E(
L∑

i=1

|hRay
Bi ||gRay

Bi |). (12)

Since hRay
mi and gRay

mi are all i.i.d. complex normal random
variables having zero mean and unit variance, CN (0, 1), then
the two expectations in (12) must have equal values and hence
the transmit powers can be simply related as

PApl(dA,IA)pl(dIA,NR
) = PBpl(dB,IB )pl(dIB ,NR

). (13)

As long as the IRS panels align and equalize the two signals
sent from the end nodes at the relay as in (10), the relay only
receives one of the three values, {−2Γ, 0, 2Γ}, which refer
to the XOR signal of interest. The relay, NR, is concerned
about detecting a network-coded mapping function of the two
received superimposed signals, i.e., the XOR of xA and xB ,
dxor. If the received value at the relay is detected as 0, then the
relay decides that the two signals, xA and xB , are different
as they cancel each other out, i.e., the XOR mapping is 1. On
the other hand, if the received value at the relay is detected
as −2Γ or 2Γ, then the relay decides that the two signals are
the same, i.e., the XOR mapping is 0. Therefore, the optimal
detector can be given as

exp
{

−(yR−2Γ)2

2σ2
n

}
+ exp

{
−(yR+2Γ)2

2σ2
n

} dxor=0

≷
dxor=1

2exp
{
− y2

R

2σ2
n

}
.

(14)
By expanding (14) and dividing both sides by exp{−y2

R−4Γ2

2σ2
n

},
the detector in (14) can be further simplified to

exp
{
2ΓyR
σ2
n

}
+ exp

{
−2ΓyR
σ2
n

}
dxor=0

≷
dxor=1

2exp
{
2Γ2

σ2
n

}
. (15)

By substituting exp{ 2ΓyR

σ2
n

} with z and after some manipula-
tions, the detector equation can be shown to be given as

z2 − 2exp
{
2Γ2

σ2
n

}
z + 1

dxor=0

≷
dxor=1

0. (16)

Therefore, by solving the above second order polynomial
equation and mapping z to yR again, the thresholds of the
above detection rule can be shown to be given as

λ1,2 = ±Γ± σ2
n

2Γ
ln
[
1 +

√
1− e−4Γ2/σ2

n

]
, (17)

and the corresponding detection rule is given as

dxor =

{
1 λ2 ≤ yR ≤ λ1

0 otherwise.
(18)

Consequently, the probability of error of the optimal detector
derived above can be calculated as

Pe =
1

2

1√
2πσ2

n

(∫ λ2

−∞
e

−y2
R

2σ2
n dyR +

∫ ∞

λ1

e
−y2

R
2σ2

n dyR

)

+
1

4

1√
2πσ2

n

∫ λ1

λ2

e
− (yR+2Γ)2

2σ2
n + e

− (yR−2Γ)2

2σ2
n dyR, (19)

and due to the symmetry of the bell curve and having λ1 =
−λ2, then the probability of error can be further simplified as

Pe=
1√
2πσ2

n

∫ λ2

−∞ e
−y2

R
2σ2

n dyR+
1
2

1√
2πσ2

n

∫ λ1

λ2
e
− (yR+2Γ)2

2σ2
n dyR

= 1
2

[
erf
(

λ2√
2σn

)
+1
]
+ 1

4

[
erf
(

2Γ+λ1√
2σn

)
−erf

(
2Γ+λ2√

2σn

)]
.

(20)
C. Averaging Error Probability over the distribution of Γ

In this subsection, the distribution of Γ is derived then used
to calculate the average probability of error of the IRS-assisted
PNC system. The distribution of Γ, fΓ, is the minimum of two
independent random variables, min(

√
PAγ

R
A ,

√
PBγ

R
B), where

γR
A and γR

B are defined in (9). Therefore, the distributions of
γR
A and γR

B , are first approximated using CLT, then they are
used to derive the distribution of Γ = min(

√
PAγ

R
A ,

√
PBγ

R
B).

We calculate the distribution of γR
A first, then the distribution

of γR
B is calculated similarly.

As in (9), γR
A has two terms. The first term, let’s call it

S1, is the summation of L i.i.d. random variables, each is the
multiplication of two i.i.d. Rayleigh random variables, i.e.,
|hAi||gAi|, hence the CLT can be used to derive an approx-
imation of S1 distribution, fS1

, as L → ∞. Consequently,
fS1

is approximated to follow a Gaussian distribution whose
mean value and variance need to be calculated. Assuming that
U = |hAi||gAi|, the expected value of U can be given as [38]

µU = E(|hAi||gAi|) = E(|hAi|)E(|gAi|)

=
√
pl(dA,IA)pl(dIA,NR

)E(|hRay
Ai |)E(|gRay

Ai |)

=
√

pl(dA,IA)pl(dIA,NR
)
π

2
σ2
Ray, (21)

where σRay = 1/
√
2 is the standard deviation of the real or

imaginary part of the complex Gaussian distribution of the
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Rayleigh fading coefficients hRay
mi and gRay

mi . Let U = XY ,
then the variance of U can be calculated as

V ar(U) = V ar(XY ) = E(X2)E(Y 2)− µ2
Xµ2

Y

= [V ar(X) + µ2
X ][V ar(Y ) + µ2

Y ]− µ2
Xµ2

Y

= V ar(X)V ar(Y )+µ2
XV ar(Y )+µ2

Y V ar(X),
(22)

where X and Y are i.i.d. and Rayleigh distributed random
variables, with µX and µY their mean values, respectively. By
substituting in (22) with the mean and variance of the Rayleigh
distribution in [38], the variance of U can then given by

V ar(U) = pl(dA,IA)pl(dIA,NR
)
16− π2

4
σ4
Ray. (23)

Therefore, the mean and variance of S1 can be given as

µS1
= LµU = L

√
pl(dA,IA)pl(dIA,NR

)
π

2
σ2
Ray (24)

V ar(S1)=L V ar(U)=Lpl(dA,IA)pl(dIA,NR
) 16−π2

4 σ4
Ray.
(25)

The second term of γR
A , Re(vA), is already a Gaussian random

variable whose mean and variance are given as

E(Re(vA)) = 0, V ar(Re(vA)) = pl(dA,NR
)σ2

Ray. (26)

Finally,
√
PAγ

R
A is approximated to follow a Gaussian distri-

bution since it is the sum of S1 and Re(vA), and scaled by a
constant,

√
PA. Then, the mean and variance of

√
PAγ

R
A are

given as

µ1 = L
√
PApl(dA,IA)pl(dIA,NR

)
π

2
σ2
Ray

σ2
1 = PA

(
Lpl(dA,IA)pl(dIA,NR

) 16−π2

4 σ4
Ray+pl(dA,NR

)σ2
Ray

)
.

(27)

Similarly,
√
PBγ

R
B is approximated to follow a Gaussian

distribution whose mean and variance are given as

µ2 = L
√
PBpl(dB,IB )pl(dIB ,NR

)
π

2
σ2
Ray

σ2
2 = PB

(
Lpl(dB,IB )pl(dIB ,NR

) 16−π2

4 σ4
Ray+pl(dB,NR

)σ2
Ray

)
.

(28)

From (13), we can notice that µ1 = µ2 = µ. Now, we
derive the required distribution, fΓ, which is the minimum
of two independent Gaussian random variables,

√
PAγ

R
A and√

PBγ
R
B ; the probability density function (PDF) of Γ can be

given as [39]

fΓ(Γ) =
1
σ1
ϕ
(

Γ−µ
σ1

)
Φ
(
−Γ−µ

σ2

)
+ 1

σ2
ϕ
(

Γ−µ
σ2

)
Φ
(
−Γ−µ

σ1

)
,

(29)
where ϕ and Φ are the PDF and cumulative distribution
function (CDF) of the standard normal distribution. Finally,
the probability of error can be given as

Peavg =

∫ ∞

0

Pe(Γ)fΓ(Γ)dΓ, (30)

where Pe(Γ) and fΓ(Γ) are substituted as in (20) and (29).
Pe(Γ) is a function of λ1 and λ2, and both are functions of
Γ as in (17). The integral in (30) does not have a closed-form
expression, however, it can be easily computed numerically.

IV. PHASE SHIFTS OPTIMIZATION OF A SINGLE-IRS-PNC

In contrast to the previous sections, in this section, we
discuss a TWRC system model that is aided by only one IRS
panel seen by the two end nodes. This limitation requires a
proper adjustment of the IRS phase shifts to align the two
signals from the two end nodes at the relay. The received
signal at the relay node, in this case, can be given as

yR =

(∑L

i=1
hAie

jθigi + vA

)√
PAxA+(∑L

i=1
hBie

jθigi + vB

)√
PBxB + n,

(31)

where gi is the Rayleigh channel fading coefficient between
the i-th reflecting element of the IRS panel and the relay
node and they follow the channel model in (1). The transmit
powers PA and PB are adjusted as in (13). Our objective
in this section is to calculate the optimum IRS phase shifts,
θi’s, that maximize the amplitude of the received signals
at the relay while adhering to the constraint that the two
signals are closely aligned, i.e., the two received signals must
have nearly the same composite magnitude and phase of
their respective effective channels at the relay. Hence, this
optimization problem can be formulated as

max
wi

∣∣∣∣∑L

i=1
hAigiwi + vA

∣∣∣∣2 (32a)

s.t.
∣∣∣√PA(

∑L
i=1 hAigiwi+vA)−

√
PB(

∑L
i=1 hBigiwi+vB)

∣∣∣2 ≤ ϵ

(32b)
|wi|= 1, i = 1, 2, . . . , L, (32c)

where wi = ejθi is the reflecting coefficient of the i-th reflector
of the IRS panel and ϵ is a relatively small positive number
that ensures sufficient alignment of the two received signals,
i.e., both signals have nearly same phase and equal amplitudes
at the relay. In case we put ϵ = 0, then the constraint becomes
an equality constraint which forces the two received signals
to have exactly same phase and amplitudes at the relay.

The unity absolute value constraints on the IRS coefficients,
wi, restricts the solution of the above optimization problem to
be on the surface of a smooth Riemannian manifold contained
in CL. Specifically, all the optimization variables, wi, are
restricted to lie on a continuous search space specified by the
complex circle manifold, which is given by

S = {wi ∈ C : |wi|= 1}. (33)

The circle, S, is a smooth Riemannian sub-manifold of C. The
L optimization variables, wi’s, of the IRS have a feasible set
which is the Cartesian product of L complex circles, i.e.,

S1 × S2 × . . .× SL. (34)

The above Cartesian product forms a smooth Riemannian
sub-manifold of CL because it is the product of smooth
Riemannian manifolds. The resultant manifold is called the
complex circle manifold and is formally defined as

SL={w=[w1, · · · , wL] ∈ CL : |w1|= . . .=|wL|=1}. (35)
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Therefore, the solution of (32) must be located on the surface
of the complex circle manifold. Hence, in the following, we
propose a manifold optimization based approach to solve
(32). Manifold optimization techniques was used in the IRS
literature to solve different problems for different IRS-assisted
communication systems [40]–[42].

The optimization problem in (32) has one more constraint
in addition to the unit modulus constraints on wi’s. Hence, we
propose to use a standard approach to handle the additional
constraints which is the exact penalty method. In order to
replace the constraints, this method modifies the objective
function by adding a weighted penalty for each constraint for
violating this constraint. Therefore, the problem is converted
to an unconstrained optimization problem, however, a non-
smooth one in general. In the Riemannian case, to solve the
problem in (32), the exact penalty method solves the following

min
wi∈M

−
∣∣∣∣∑L

i=1
hAigiwi + vA

∣∣∣∣2+ρmax {0, r(w)} , (36)

where ρ > 0 is a penalty weight, M is the Riemannian
manifold and r(w) is defined as

r(w)=
∣∣∣√PA(

∑L
i=1 hAigiwi+vA)−

√
PB(

∑L
i=1 hBigiwi+vB)

∣∣∣2 −ϵ.

(37)
Note that the constant modulus constraint in (32) is satisfied by
restricting the feasible set to the manifold M. In the Euclidean
case, only a finite penalty weight ρ is needed to exactly satisfy
the constraints, hence the method’s name. By analogy, we
have the same previous approach in the Riemannian manifold
case [43]. The resulting penalized cost function in (36) is
not smooth because the cost function contains a maximum
function that is not smooth around zero. Using a smoothing
technique, we can smooth and solve (36) as follows. A
common approach called linear-quadratic loss [44] is used to
smooth the maximum function in (36). Here, with a smoothing
parameter, u > 0, we smooth the maximum function as
max{0, r(w)} ≈ P(r(w), u), where P(r(wi), u) is given as

P(r(w), u) =


0 r(w) ≤ 0
r(w)2

2u 0 ≤ r(w) ≤ u

r(w)− u
2 r(w) ≥ u.

(38)

Therefore, an unconstrained version of our manifold optimiza-
tion problem can be written as

min
w∈M

Q(w, ρ, u) = f(w) + ρP(r(w), u), (39)

where f(w)= − |
∑L

i=1 hAigiwi+vA|2: M → R is a smooth
real-valued objective function to be optimized. Now, our
problem has been converted to a smooth unconstrained op-
timization on the surface of the complex circle manifold, SL.
Hence, gradient-based unconstrained manifold optimization
algorithms can then be used to efficiently search for a solution.

A gradient-descent algorithm on Riemannian manifolds
consists of two main steps like the case of Euclidean spaces.
At first, we find a descent direction, then the step size along
this direction is calculated. These steps are repeated in order to
update the solution iteratively until it converges. However, the
previous steps are adjusted to cope with the geometric nature

of the manifold and are discussed in the following. The tangent
space, TwM, at a point, w, on a differentiable manifold, M,
is defined as the real vector space that intuitively contains the
possible directions in which one can tangentially pass through
w. The tangent space at w is given by

TwM = {v ∈ CL : Re(v ⊙w∗ = 0L)}, (40)

where Re{} denotes the element-wise real-part of a complex
vector, and ⊙ denotes the Hadamard element-wise multipli-
cation. The gradient that is used in manifold optimization
contexts is called the Riemannian gradient, and it is the
direction of the steepest increase of the cost function at a
given point on the manifold, w, but restricted to its tangent
space. To compute the Riemannian gradient at a point, we
first compute the the Euclidean gradient at this point then we
project it onto the tangent space using a projection operator.
The projection operator, PTwM, at point w on the complex
circle manifold is given by [43]

PTwM(v) = v − Re{v ⊙w∗} ⊙w. (41)

Therefore, the Riemannian gradient of our smooth objective
function Q on the manifold can be given as

∇MQ(w) = PTwM(∇Q(w))

= ∇Q(w)− Re{∇Q(w)⊙w∗} ⊙w, (42)

where ∇Q(w) is the Euclidean gradient at the point w.
Algorithm 1 presents the steps of solving the unconstrained

problem Q in (39) by iteratively updating the penalty coeffi-
cient ρ and smoothing parameter u.

Algorithm 1: Exact penalty method via smoothing

1 Input: Starting point w0, starting penalty coefficient
ρ0, starting smoothing accuracy u0, minimum
smoothing accuracy umin, constants θu ∈ (0, 1),
θρ > 1, τ ≥ 0, minimum step length dmin.

2 for k = 0, 1, 2, . . . do
3 To obtain wk+1, choose any sub-solver to

approximately solve

min
w∈M

Q(w, ρk, uk)

with warm-start at wk and stopping criterion

∥grad Q(w, ρk, uk)∥ ≤ δ.

4 if
(dist(wk,wk+1) < dmin or uk ≤ umin) and r(wk+1) <
τ then

5 Return wk+1;
6 end
7 uk+1 = max{umin, θuuk};
8 if (k = 0 or r(wk+1) ≥ τ) then
9 ρk+1 = θρρk

10 else
11 ρk+1 = ρk;
12 end
13 end
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To sum up, the feasibility of (32) is ensured as follows.
The unit modulus constraint in (32c) is simply met by solving
the optimization problem on the complex circle manifold as
explained above. The other constraint (32b) is satisfied using
the exact penalty method as in (36), by stitching the constraint
into the objective function itself using a penalty weight, ρ,
to convert the problem from being constrained to being an
unconstrained optimization problem.

In this paragraph, we discuss the dynamics of Algorithm
1 and how the parameters ρ and u are updated in each
iteration. First, it should be noted that the optimum points
of the penalized unconstrained problem in (39) coincide with
the optimum points of the original problem if the penalty
coefficient ρ is set above some certain threshold [43]. This
threshold is often not known and starting with a high value for
ρ may slow down the convergence of Algorithm 1. Therefore,
a common approach in [45] is used to tackle this by setting ρ at
a relatively low initial value, then keeping increasing ρ in each
iteration if the constraint (32b) is not satisfied as in lines 8 and
9 in Algorithm 1. The value τ is set as a low positive number
which represents a tolerance factor over which the constraint
r(wk+1) is considered out of the feasible set and ρ must be
increased. The parameter ρk is increased by multiplying it
with θρ which is a constant and greater than one. The lower
the smoothing parameter uk, the more approximation accuracy
of the function (38). However, if uk is too small, numerical
difficulties may arise in the used approximation function (38).
Therefore, the algorithm starts with an initial value u0, then
it decreases the value of uk in each iteration as in line 7
until it reaches a minimum value umin after which the value
of uk cannot be decreased. The parameter θu is a positive
constant fraction which is multiplied by uk in each iteration
to lower its value. When the distance between the obtained
solutions in the current and previous iteration is lower than
dmin, the algorithm terminates. In each iteration, a manifold
optimization solver is used to solve the unconstrained problem
in (39), as in line 3 in the algorithm, with a stopping criterion
set on the gradient norm. We used the trust region solver
[43] in the Manopt MATLAB tool [46] to solve the manifold
optimization problem in each iteration.

V. IRS-PNC FOR HIGHER MODULATION ORDERS

In this section, we study the application of IRS-aided PNC
discussed above in practical communication systems where
channel coding and higher modulation orders are used. As
discussed in previous sections, IRS is used to align the two
received superimposed signals and to cancel the CPO problem
between the two end nodes. Consequently, the real dimension
of one complex signal will remain orthogonal to the imaginary
dimension of the other superimposed signal at the relay, and
no interference from real dimensions to imaginary dimensions
will occur, and vice versa. Therefore, the real dimensions of
the two end nodes will be superimposed on each other, sepa-
rated from the received superimposed imaginary dimensions.
Hence, the relay can deduce network-coded packets from
both real and imaginary dimensions separately. Therefore, we
assume that the information sequence at the end node A is

divided into two streams; uA and u′
A. The two information

streams are encoded separately using two separate encoders
to form the two codewords, cA and c′A. Then, the codeword
cA is modulated over the real dimension of node A, while
c′A is modulated over the imaginary dimension to form the
modulation-coded complex sequence, xA. The encoding and
modulation at node B is done likewise. Hence, after passing
through the IRS-aided TWRC during the broadcast phase, the
received vector at the relay is given as

yR = ΓxA + ΓxB + nR, (43)

where nR is the additive noise vector at the relay NR and Γ
represents the summation of the IRS-adjusted fading channels
between the end nodes and the relay in (10)4. We consider
the RA channel coding in this section, where we design
specific decoding schemes to decode the desired network-
coded information packets. In the following, the encoding and
modulation processes of the channel-coded IRS-assisted PNC
design with high modulation orders are illustrated in detail
along with their associated decoding schemes.

Denote the q-ary first part, to be modulated on the real
dimension, of the information sequence of node m by
um = [um,1, um,2, . . . , um,K ]T , m ∈ {A,B}, where um,k ∈
{0, 1, . . . , q − 1}, k = 1, . . . ,K, q = 2z , where z is a
positive integer and K is the length of the message sequence.
The message sequence of node m is encoded to create the
codeword, cm = [cm,1, . . . , cm,N ]T , using an RA encoder over
the ring R = Z/qZ, where Z is the set of integer numbers and
N is the length of the codeword. The sum operation, x̄ + ȳ,
in Z/qZ is defined as the remainder when the integer x + y
is divided by q. The q-ary codeword, cm, is then modulated
as a real q-pulse amplitude modulation (PAM) signal on the
real dimension. Furthermore, the second part of the data
sequence, to be modulated on the imaginary dimension, u′

m,
is RA-encoded to form the codeword, c′m, then modulated
as a q-PAM signal on the imaginary dimension. Hence, q2-
ary quadrature amplitude modulation (QAM) is considered
here where the q2-ary QAM set under consideration is the
Cartesian product of the real q-PAM signal with itself5. The
modulation-coded symbol sequence can then be written as
xm = [xm,1, . . . , xm,N ]T , where xm,n is given by

xm,n = η

(
cm,n − q − 1

2

)
+ η j

(
c′m,n − q − 1

2

)
, (44)

where m ∈ {A,B}, n = 1, 2, . . . , N , j =
√
−1, and η is a

power scaling factor. In the following, we present two differ-
ent decoding schemes to decode network-coded information
sequences from the received superimposed signal at the relay.
In the following, we discuss two decoding schemes, namely
modular-sum and arithmetic-sum, to decode the superimposed
codewords on the real dimension of the received signal; The
decoding of the imaginary dimension is done likewise.

4Note that channel coded IRS-assisted PNC can be applied to the two-IRS
and the single-IRS scenarios which were discussed in II and IV, respectively

5For clarity, we present only the case of square QAM constellations.
However, our model can be readily extended to non-square constellations.
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Figure 2: Factor graph for decoding network-coded data packets

A. Modular-Sum-based Channel-Network Decoding

The modular-sum joint channel-network decoding is based
on the detection of the R-modulo-sum over the ring, R, of the
two signals coming from the end nodes. The relay, NR, first
estimates the probability mass function (PMF) of cA,n⊕cB,n,
denoted by PcA,n⊕cB,n

(a) = Pr(cA,n ⊕ cB,n = a|Re{yR,n}),
from the n-th received symbol yR,n, where ⊕ is the R-modulo-
sum operation defined earlier. Using the same linear channel
codes at both end nodes, the sequence cA⊕cB is the codeword
of uA ⊕ uB . By decoding the estimate of cA ⊕ cB , i.e.
PcA,n⊕cB,n

, directly with a soft input decoder, the relay can
obtain uA ⊕ uB .

The Tanner graph shown in Fig. 2 is read from the left to
the right in the RA encoding process, with the function, f ,
defined as the R-modulo-sum of its two inputs; The output of
f can be written as

c⊕,n = f(c⊕,n−1, s⊕,n) = c⊕,n−1 ⊕ s⊕,n, (45)

where c⊕,n = cA,n ⊕ cB,n, c⊕,n−1 = cA,n−1 ⊕ cB,n−1, and
s⊕,n = sA,n ⊕ sB,n. The value sm,n is the n-th interleaved
symbol of node m, and it equals the value of the k-th
information symbol of node m, i.e., sm,n = um,k, where
m ∈ {A,B}. The mapping from index k to the index n is
determined by the interleaver in Fig. 2, which is the same
for both of the end nodes’ encoders. In the decoding process,
input is added to the evidence nodes on the rightmost as q-state
message. Then, the messages at the evidence nodes are passed
iteratively between the information nodes and code nodes; This
process is called belief propagation (BP). The messages on
the edges connecting information nodes with check nodes are
the PMFs of u⊕,k = uA,k ⊕ uB,k, while the messages on
the edges connecting the code nodes with the check nodes
or the evidence nodes are the PMFs of c⊕,n = cA,n ⊕ cB,n.
By assuming that the message space is 4-ary, i.e. q = 4 and
um,k ∈ {0, 1, 2, 3}, as an example for the rest of the section,
the decoding algorithm is presented in the following steps.

Initialization: Let p = (p0, p1, p2, p3) and q =
(q0, q1, q2, q3) be the input messages to a node that come from
two different nodes. The messages on all the edges are initially
set to be (1/4, 1/4, 1/4, 1/4) except for the messages on the
rightmost edges that are connected to the evidence nodes.

Input of the Evidence Nodes: The messages that are
passed from the evidence nodes are the input messages of
the decoding algorithm. These messages contain the four-
state probabilities of the modulo-4 sum of the two received
superimposed codeword symbols, c⊕,n. Denote the input to
the n-th evidence node by pn = (p0, p1, p2, p3). Given the
observation at the relay node, the likelihood function of c⊕,n

can be written as

g1(RA, RB)=
1

β1
exp

{
−(Re{yR,n}−ΓRA−ΓRB)

2

2σ2

}
, (46)

while the likelihood function of c′⊕,n = c′A,n ⊕ c′B,n, when
decoding the imaginary dimension, can be written as

g2(IA, IB)=
1

β2
exp

{
−(Im{yR,n}−ΓIA−ΓIB)

2

2σ2

}
, (47)

where RA = Re{xA,n}, RB = Re{xB,n}, IA = Im{xA,n},
IB = Im{xB,n}, σ2 is the variance of the real or imaginary
dimension of the complex noise. Assuming that η = 2 in (44),
then the codeword elements are mapped to {−3,−1, 1, 3} on
the real and imaginary parts of xm,n. In this case, we specify
the input probabilities to the evidence node as

p0 = gx(−3,−3) + gx(1, 1) + gx(3,−1) + gx(−1, 3)

p1 = gx(−3,−1) + gx(−1,−3) + gx(3, 1) + gx(1, 3)

p2 = gx(3, 3) + gx(−1,−1) + gx(−3, 1) + gx(1,−3)

p3 = gx(1,−1) + gx(−1, 1) + gx(3,−3) + gx(−3, 3), (48)

where x ∈ {1, 2} and βx is a normalization factor that ensures
that

∑3
i=0 pi = 1.

Message Updating at the variable Nodes: The variable
nodes in Fig. 2 are the code nodes and information nodes.
Assuming that the repetition factor of the RA encoder is 3,
every variable node is connected to three separate edges except
for the last code node at the bottom of the factor graph in Fig.
2. The output message of a variable node is represented as
V AR(p,q), where p and q are the input messages passed
from the other two connected edges, whereas the output is the
updated message on the rest edge. Using the same probability
calculations in [47], the output message for the variable node
is obtained as

V AR(p,q) =
1

ζ
(p0q0, p1q1, p2q2, p3q3), (49)

where ζ is a normalization factor which ensures that
1
ζ

∑3
i=0 piqi = 1.

Message Updating for the Check Nodes: Designing the
message updating rules for the check nodes is one of the core
concerns in the sum-product decoding algorithm applied in
PNC. As we see in Fig. 2, every check node is connected
to three edges except for the first check node at the top of
the graph. The output message of a check node is represented
as CHK(p,q), where p and q are the input messages that
come from the other two connected edges, whereas the output
is the updated message on the third (rest) edge. Now, we
compute the message updating rules at the check node in
both backward and forward propagation. First, we compute the
output message of the check node when propagating from right
to left, i.e. backward propagation, during the BP algorithm. Let
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S = s⊕,n, C̄ = c⊕,n−1, and C = c⊕,n, the probability that
the symbol S is equal to 0 given the two input messages p
and q is calculated, given that C = S ⊕ C̄, as

Pr(S = 0|C̄ ∼ p, C ∼ q)

=
∑3

i=0
Pr(C̄ = i)Pr(S = 0|C̄ = i, C ∼ q)

= Pr(C̄ = 0|p)Pr(C = 0|q)+Pr(C̄ = 1|p)Pr(C = 1|q)
+ Pr(C̄ = 2|p)Pr(C = 2|q)+Pr(C̄ = 3|p)Pr(C = 3|q)
= p0q0 + p1q1 + p2q2 + p3q3, (50)

where C∼q means that the random variable C has a PMF
distribution as the values in the q vector. Similarly, the
probabilities that the symbol S takes the values 1, 2, and
3, given the two input messages, can be obtained. Therefore,
the message update rule at the check node in the backward
propagation is given as

CHK1(p,q) = (p0q0 + p1q1 + p2q2 + p3q3,

p0q1 + p1q2 + p2q3 + p3q0, p0q2 + p1q3 + p2q0 + p3q1,

p0q3 + p1q0 + p2q1 + p3q2). (51)

On the other hand, when the message passing is from left to
right, i.e. forward propagation, the probability that the symbol
C is equal to 0 given the two input messages p and q is
calculated, given that C = S ⊕ C̄, as

Pr(C=0|C̄ ∼ p, S ∼ q)

= Pr(C̄=0|p)Pr(S=0|q) + Pr(C̄=1|p)Pr(S=3|q)
+ Pr(C̄=2|p)Pr(S=2|q) + Pr(C̄=3|p)Pr(S=1|q). (52)

Similarly, the probabilities that the symbol C takes the values
1, 2, and 3, given the two input messages, can be obtained.
Therefore, the message update rule at the check node in the
forward propagation is given as

CHK2(p,q) = (p0q0 + p1q3 + p2q2 + p3q1,

p0q1 + p1q0 + p2q3 + p3q2, p0q2 + p1q1 + p2q0 + p3q3,

p0q3 + p1q2 + p2q1 + p3q0). (53)

B. Arithmetic-sum based channel-network decoding

In this subsection, and motivated by the results in [47],
which show the superiority of arithmetic-sum-based decoding
in the binary case over the modulo-2 sum, we consider the
use of arithmetic-sum based decoding. We extend the work in
[47], which considered only binary channel-coded PNC. We
design and present the arithmetic-sum-based channel-network
decoding scheme for the general q-ary message sequences.
The 4-ary message sequences, i.e. q = 4, are considered as
an example in this subsection, by deriving its factor graph and
the corresponding update rules6 of the BP decoding algorithm.

The arithmetic-sum based decoding scheme works as fol-
lows. First, the relay obtains the PMF of uA,k+uB,k, denoted
by PuA,k+uB,k

(a) = Pr(uA,k+uB,k = a|yR), by decoding
the received signal, yR. The “ + ” operation here is the
regular arithmetic-sum over the real numbers. Then, the target

6The design presented here can be readily extended to consider any other
higher-order modulation scheme.

network-coded information, uA⊕uB , can be directly obtained
using the following symbol-level PNC mapping

uA,k ⊕uB,k =


0 argmaxPuA,k+uB,k

(a) = 0 or 4
1 argmaxPuA,k+uB,k

(a) = 1 or 5
2 argmaxPuA,k+uB,k

(a) = 2 or 6
3 argmaxPuA,k+uB,k

(a) = 3.

(54)

After that, the network coded information, uA⊕uB , is encoded
at the relay using a standard channel encoder and is broadcast
to both end nodes in the broadcast phase.

The decoder at NR is different from the traditional RA
decoder. In arithmetic-sum based PNC, the decoder can be
considered as processing the received superimposed vector,
yR, at the relay to produce the arithmetic-sum of the two
source message sequences, uA + uB . Without the additive
noise at the relay, the received signals are the superposition of
the two codewords transmitted by the two end nodes. Hence,
the objective of the decoder at NR can be seen as the inverse of
the superposition of the encoding processes at the end nodes.
Therefore, the decoder at NR can be considered as the decoder
of a virtual encoder whose input uv and output cv are

uv = uA + uB , cv = cA + cB . (55)

The decoder design is based on the structure of this virtual
encoder which is similar to that of the regular RA encoder
in Fig. 2, when being read form left to right, except that
the modulo-q sum is now replaced by a general function f .
The function f is derived based on the requirements in (55).
Consequently, the function f in Fig. 2 needs to satisfy

cv,n = f(cv,n−1, sv,n) = cA,n + cB,n, (56)
when uv,k = uA,k+uB,k,

where the symbol, sv,n = sA,n+sB,n, is the n-th interleaved
symbol of the virtual encoder, i.e., sv,n = uv,k. The mapping
from the index k to the index n is determined by the in-
terleaver, which is the same for both the end nodes’ encoders
and the virtual encoder. Based on Fig. 2, the relations between
cA,n, cB,n and uA,k, uB,k can be, respectively, written as

cA,n = cA,n−1 ⊕ sA,n = cA,n−1 ⊕ uA,k

cB,n = cB,n−1 ⊕ sB,n = cB,n−1 ⊕ uB,k. (57)

By combining equations (56) and (57), the general function f
can be obtained as

cv,n=f(cv,n−1, sv,n) = cA,n−1⊕uA,k+cB,n−1⊕uB,k, (58)

where all possible inputs and corresponding outputs of f are
calculated in Table I for a 4-ary message sequence.

In the decoding process of the arithmetic-sum, the input is
added to the evidence nodes on the rightmost as a (2q−1)-state
message, which represents the PMF of the arithmetic-sum,
cA,n+cB,n. The messages on the edges connecting informa-
tion nodes with check nodes are the PMFs of uA,k+uB,k,
while those on the edges connecting the code nodes with
the check nodes or the evidence nodes are the PMFs of
cA,n+cB,n. By assuming the message space is 4-ary, i.e. q = 4
and um,k ∈ {0, 1, 2, 3}, as an example for the rest of the
section, the decoding is presented in the following steps.
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cA,n+cB,n cA,n−1+cB,n−1 sA,n+sB,n cA,n+cB,n cA,n−1+cB,n−1 sA,n+sB,n cA,n+cB,n cA,n−1+cB,n−1 sA,n+sB,n

4 6 6 3 4 3 2 2 0
3 6 5 2, 6 4 2 3 1 6
2 6 4 1, 5 4 1 2, 6 1 5

1, 5 6 3 4 4 0 1, 5 1 4
0, 4 6 2 1, 5 3 6 0, 4 1 3
3 6 1 0, 4 3 5 3 1 2
6 6 0 3 3 4 2 1 1
3 5 6 2, 6 3 3 1 1 0
2 5 5 1, 5 3 2 6 0 6

1, 5 5 4 0, 4 3 1 5 0 5
0, 4 5 3 3 3 0 4 0 4
3 5 2 0, 4 2 6 3 0 3

2, 6 5 1 3 2 5 2 0 2
5 5 0 2, 6 2 4 1 0 1
2 4 6 1, 5 2 3 0 0 0

1, 5 4 5 0, 4 2 2 – – –
0, 4 4 4 3 2 1 – – –

Table I: The truth table of the function, f , for the arithmetic sum case

Initialization: Let p = (p0, p1, p2, p3, p4, p5, p6) and q =
(q0, q1, q2, q3, q4, q5, q6) be the message input from two dif-
ferent nodes. All the messages associated with the edges are
initially set to the prior probabilities of the seven states,
i.e. (1/16, 2/16, 3/16, 4/16, 3/16, 2/16, 1/16), except for the
messages on the edges connected to the evidence nodes.

Input of the Evidence Nodes: Denote the input seven-
state PMF of cA,n + cB,n at the n-th evidence node as pn =
(p0, p1, p2, p3, p4, p5, p6), which is calculated as

p0 = gx(−3,−3), p1 = gx(−3,−1) + gx(−1,−3),

p2 = gx(−1,−1) + gx(−3, 1) + gx(1,−3),

p3 = gx(1,−1) + gx(−1, 1) + gx(3,−3) + gx(−3, 3),

p4 = gx(1, 1) + gx(−3, 1) + gx(1,−3),

p5 = gx(3, 1) + gx(1, 3), p6 = gx(3, 3), (59)

where x ∈ {1, 2}, gx is defined in (46) and (47) in which βx

is a normalization factor that ensures that
∑6

i=0 pi = 1.
Message Updating for the variable Nodes: Assuming that

the repetition factor of the virtual RA encoder is 3, every
variable node is connected to three separate edges except for
the last code node at the bottom. The output message of a
variable node is represented as V AR(p,q), where p and q
are the seven-state input messages passed from the other two
connected edges, whereas the output is the updated message on
the rest edge. Using the same calculations in [47], the output
message for the variable node in our scheme is derived as

V AR(p,q) =
1

ζ
(p0q0,

p1q1
2

,
p2q2
3

,
p3q3
4

,
p4q4
3

,
p5q5
2

, p6q6),

(60)
where ζ is a normalization factor.

Message Updating for the Check Nodes: The output
message of a check node is represented as CHK(p,q), where
p and q are the input messages that come from the other two
connected edges, whereas the output is the updated message on
the third (rest) edge. Let S = sA,n+sB,n, C̄=cA,n−1+cB,n−1,
and C=cA,n+cB,n, we first compute the output message of
the check node when propagating from right to left (backward
propagation), i.e., the PMF of S. The PMF of S is derived by
calculating the probabilities that S takes the values 0, 1, . . . , 6

given the PMFs of C and C̄. The probability that the symbol
S is equal to 0 given p and q is calculated as

Pr(S=0|C̄∼p, C∼q) =

6∑
i=0

Pr(C̄=i|p)Pr(S=0|C̄=i, C∼q).

(61)
To calculate Pr(S=0|C̄=i, C∼q), let’s take an example when
C̄ = 2. From Table I, given C̄ = 2, we can find that S = 0
or 4 when C = 2. Hence, we need to calculate how probable
S = 0 is when C = 2 given that C̄ = 2. From (58), we
can obtain all the possibilities that C takes the value 2 when
C̄ = 2. When C̄ = 2, the pair (cA,n−1, cB,n−1) can take the
values (0, 2), (2, 0), (1, 1). When S = 0, the pair (sA,n, sB,n)
takes the value (0, 0), however, when S = 4, the pair can take
the values (2, 2), (3, 1), or (1, 3); using these values in (58)
and taking all possible combinations that lead to C = 2 as
in Table II, we can count the number of occurrences of S=0
when C̄=2 and C=2.

From Table II, we see that S=sA,n+sB,n took the value
0 three times out of nine when C=2. Hence, the probability
Pr(S=0|C̄=i, C∼q) equals to (1/3)Pr(C=2)=(1/3)q2. In a
similar manner, we can get the other terms of (61) as

Pr(S = 0|C̄ ∼ p, C ∼ q)

= Pr(C̄=0|p)Pr(C=0|q) + (1/2)Pr(C̄=1|p)Pr(C=1|q)
+(1/3)Pr(C̄=2|p)Pr(C=2|q) + (1/4)Pr(C̄=3|p)Pr(C=3|q)
+(1/3)Pr(C̄=4|p)Pr(C=4|q) + (1/2)Pr(C̄=5|p)Pr(C=5|q)
+Pr(C̄=6|p)Pr(C=6|q)

= p0q0+
p1q1
2

+
p2q2
3

+
p3q3
4

+
p4q4
3

+
p5q5
2

+p6q6. (62)

Similarly, the probabilities that the symbol S takes the values
1, . . . , 6 given the two input messages can be calculated.
Therefore, the message update rule at the check node in
backward propagation can be given as in (63).

When the messages are passed form left to right, i.e., during
forward propagation, the probability that the symbol C is equal
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C cA,n−1 sA,n cB,n−1 sB,n

2 0 0 2 0
2 2 0 0 0
2 1 0 1 0
2 0 2 2 2
2 2 2 0 2
6 1 2 1 2
6 0 3 2 1
2 2 3 0 1
2 1 3 1 1
2 0 1 2 3
6 2 1 0 3
2 1 1 1 3

Table II: Possible combinations of the backward example

to 0 given p and q is calculated, following Table I, as

Pr(C = 0|C̄ ∼ p, S ∼ q)

= Pr(C̄=0|p)Pr(S=0|q) + (1/4)Pr(C̄=1|p)Pr(S=3|q)
+(2/9)Pr(C̄=2|p)Pr(S=2|q) + (1/3)Pr(C̄=2|p)Pr(S=6|q)
+(1/4)Pr(C̄=3|p)Pr(S=1|q) + (1/4)Pr(C̄=3|p)Pr(S=5|q)
+(1/3)Pr(C̄=4|p)Pr(S=4|q) + (1/4)Pr(C̄=5|p)Pr(S=3|q)
+(1/3)Pr(C̄=6|p)Pr(S=2|q)
= p0q0 + p1q3/4 + p2(q6/3 + 2q2/9) + p3(q5 + q1)/4

+ p4q4/3 + p5q3/4 + p6q2/3. (65)

In (65), we have accounted for all combinations of C̄ and S
that produce C = 0. However, sometimes, e.g. (C̄, S)=(2, 2),
C may be 0 or 4. In this case, we have to compute the
probability of C=0 when (C̄, S)=(2, 2). When C̄=2, the pair
(cA,n−1, cB,n−1) can take the values (0, 2), (2, 0), or (1, 1).
When S = 2, the pair (sA,n, sB,n) can take the values
(0, 2), (2, 1), or (1, 1); using these values in (58) and taking
all possible combinations as in Table III, we can count the
number of occurrences of C=0 when C̄=2 and S=2.

From Table III, we see that C=0 occurred two
times out of the nine possibilities. Hence, the probability
Pr(C=0|C̄=2, S=2) is 2/9. Similarly, we can get the scaling
fractions of the other terms in (65).

The probabilities that the symbol C takes the values 1, . . . , 6
given the two input messages, can be calculated in the same
manner. Therefore, the message update rule at the check node
in the forward propagation can be given as in (64).

C cA,n−1 sA,n cB,n−1 sB,n

0 0 0 2 2
4 2 0 0 2
4 1 0 1 2
4 0 2 2 0
0 2 2 0 0
4 1 2 1 0
4 0 1 2 1
4 2 1 0 1
4 1 1 1 1

Table III: Possible combinations of the forward example

VI. SIMULATION RESULTS

In this section, the performance of both PNC scenarios aided
with two IRS panels, and only one IRS panel is evaluated
to show the significance of optimizing the IRS reflectors to
align the two received signals at the relay. Additionally, the
performance of the proposed channel coded IRS-PNC with
high modulation orders is evaluated. With this simulation,
we evaluate the designed channel coded PNC scheme and
prove the convergence of the calculated update rules of the
BP decoding of both modular sum and arithmetic sum based
channel coded PNC schemes. We are interested in evaluating
the error performance of the detected network-coded signal at
the relay as it represents the bottleneck of the PNC system.

In this simulation study, we assume a general unbalanced
channels case where node A is closer to the relay than node
B. For all the figures, except Fig. 4, the node-IRS, IRS-relay
and node-relay distances for node A are assumed as dA,IA =
30, dIA,NR

= 30 and dA,NR
= 50, while these distances are

dB,IB = 60, dIB ,NR
= 60 and dB,NR

= 100 for node B,
respectively. Moreover, the transmit powers of the two nodes,
PA and PB , are adjusted according to (13) to compensate for
the unbalanced channel gains of the two nodes. The path loss
at the reference distance in (3) is η0 = 10−3, and the path loss
exponents for the direct links (node-relay), node-IRS links and
IRS-relay links are assumed as αd = 5.5, αN,I = 2.2 and
αI,R = 2.2, respectively. The noise power σ2

n is set to be
−114 dBm.

Fig. 3 compares the performances of the different PNC
detectors against the proposed simplified PNC detector in
Sec. III-B for the uncoded double-IRS PNC scenario. The
comparison is done for different values of the number of

CHK1(p,q) = [p0q0 + p1q1/2 + p2q2/3 + p3q3/4 + p4q4/3 + p5q5/2 + p6q6,

p0q1 + 2p1q2/3 + p2q3/2 + p3(q0 + q4)/2 + p4(q1/3 + 2/3q5) + p5(q2/3 + q6) + p6q3/2,

p0q2 + 3p1q3/4 + p2(2q0/3 + 7q4/9) + 3p3(q1 + q5)/4 + p4(2q2/3 + q6) + 3p5q3/4 + p6(q0 + 2q4/3),

p0q3 + p1(q0 + q4) + p2(q1 + q5) + p3(q2 + q6) + p4q3 + p5(q0 + q4) + p6(q1 + q5),

p0q4 + p1(q1/2 + q5) + p2(2q2/3 + q6) + 3p3q3/4 + p4(q0 + 2q4/3) + p5(q1 + q5/2) + p6q2,

p0q5 + p1(q2/3 + q6) + p2q3/2 + p3(q0 + q4)/2 + p4(2q1/3 + q5/3) + 2p5q2/3 + p6q3/2,

p0q6 + p1q3/4 + p2(q0/3 + 2q4/9) + p3(q1 + q5)/4 + p4q2/3 + p5q3/4 + p6q4/3] (63)

CHK2(p,q) = [p0q0 + p1q3/4 + p2(q6/3 + 2q2/9) + p3(q5 + q1)/4 + p4q4/3 + p5q3/4 + p6q2/3,

p0q1 + p1(q0 + q4/3) + p2q3/2 + p3(q6 + q2)/2 + p4(2q5/3 + q1/3) + 2p5q4/3 + p6q3/2,

p0q2 + p1(q1 + q5/2) + p2(q0 + 2q4/3) + 3p3q3/4 + p4(2q2/3 + q6) + p5(q1/2 + q5) + p6q4,

p0q3 + p1(q2 + q6) + p2(q1 + q5) + p3(q0 + q4) + p4q3 + p5(q2 + q6) + p6(q1 + q5),

p0q4 + 3p1q3/4 + p2(7q2/9 + 2q6/3) + 3p3(q1 + q5)/4 + p4(q0 + 2q4/3) + 3p5q3/4 + p6(q6 + 2q2/3),

p0q5 + 2p1q4/3 + p2q3/2 + p3(q6 + q2)/2 + p4(2q1/3 + q5/3) + p5(q0 + q4/3) + p6q3/2,

p0q6 + p1q5/2 + p2q4/3 + p3q3/4 + p4q2/3 + p5q1/2 + p6q0] (64)
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Figure 3: Simulation vs. approximate theoretical BER performance
of the two-IRS PNC scenario, with different number of reflectors L

reflector elements at the IRS panels, L = 10, 20, 30, 40. Fig.
3 compares the performance of the optimal detector in (8)
against the proposed simplified detector with simple thresholds
in (17). We plot the performance of the simple detector
with and without attenuation control at the IRS to show the
advantage of applying the attenuation factors. The figure shows
that the proposed simple detector in Sec. III-B with attenuation
control at the IRS provides a very close performance to the
optimal detector in (8). This proves the efficacy of using
the proposed simplified detector with attenuation control at
the IRS panels. On the other hand, the graph shows the
inferiority of using the simple PNC detector without applying
the attenuation factors discussed in Sec. III-B, which proves
the importance of applying these attenuation controls at the
IRS. Fig. 3 also compares the simulated bit error rate (BER)
performance of the proposed simplified PNC detector with IRS
attenuation control against the derived CLT-based expression
of the approximate detection error probability, derived in Sec.
III. We can notice from the figure that the curves plotted
using the approximate analytical expression in (30) get closer
to the simulated error probability curves as the number of
reflectors, L, increases. The reason behind this observation is
that as L increases, the CLT-based Gaussian approximation of
the sum of the IRS channels becomes tighter and converges
to the actual distribution of the sum. Hence, as the CLT
approximation gets more accurate, the CLT-based analytical
error curves become more accurate and closer to the true error
curves plotted using Monte Carlo simulations. The figure also
shows that the system’s performance enhances as L increases
because the number of received signal copies increases in
accordance, which improves the received signal quality at the
relay.

In Fig. 4, the BER performance of the one-IRS PNC
scenario is shown. We assume the distances between the nodes
and the IRS panel are dA,I = 60 and dB,I = 60, while
the distance between the IRS and the relay is dI,NR

= 30.
The BER of the one-IRS scenario with optimized phase-shifts,
after solving (32) using Algorithm 1, is compared with the
one-IRS scenario without optimization over the Riemannian
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Figure 4: BER performance of the one-IRS PNC scenario: optimal
phase shifts vs. any random feasible solution

manifold, i.e., using any feasible solution which satisfies the
constraint in (32). All feasible points that satisfy this con-
straint can successfully align the two received superimposed
signals, coming from the two end nodes, in the PNC fashion,
i.e., to have nearly the same phase and equal amplitudes at
the relay. However, not all points in this feasible set can
maximize the sum amplitude of the received signals at the
relay, Γopt=|

∑L
i=1 hAigiw

∗
i+vA|2, to minimize the detection

error probability of the PNC detector discussed in Sec. III.
Therefore, Fig. 4 shows that the performance of the optimized
one-IRS scenario with L = 40, 80 largely beats that of the one-
IRS scenario without optimization. This shows the significance
of the phase shifts optimization discussed in Sec. IV. It is
also noticeable that the double-IRS scenario with L = 40 per
each panel outperforms the single-IRS scenario with number
of reflectors L = 40. This is intuitive since the single-IRS
scenario has an extra constraint of jointly aligning the two
received signals which limits the maximum attainable ampli-
tude at the relay. Whereas, this limiting constraint does not
exist in the two-IRS scenario as each end node is served by a
separate IRS-panel. Additionally, the figure shows that double-
IRS scenario can also outperform the single-IRS scenario even
with same total number of reflectors L = 80. Although the two
end nodes see the whole L = 80 reflecting elements in the
single-IRS scenario, unlike the double-IRS scenario, still the
double-IRS scenario outperforms the single-IRS scenario. The
reason behind this is that the IRS panels are placed closer to
the end nodes and the relay in the double-IRS scenario, which
leads to higher channel gains. In contrast, we can only place
the single-IRS in the middle, leading to larger distances from
the nodes and hence higher path loss for both nodes. However,
the single-IRS scenario is unavoidable to the TWRC system
when only one IRS panel is available.

Fig. 5, Fig. 6 and Fig. 7 discuss the performance of channel
coded PNC operating in the two-IRS scenario. Fig. 5 and
Fig. 6 show the error probability performance of the two-
IRS scenario when binary and q-ary channel coded PNC are
applied, respectively. However, Fig. 7 focuses on the perfor-
mance comparison between modulo-q versus arithmetic based
channel-network decoding when the q-ary channel coded PNC
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Figure 5: BER of modulo-2 sum vs. arithmetic sum for the case of
binary RA-coded PNC in the two-IRS scenario using QPSK

is applied in the two-IRS scenario. The following simulation
parameters are unified for the three figures. The data packet
length is set to be 2048 and the repetition factor of the RA
encoder is set to be 3. For every energy per symbol value,
we average the error performance over 10000 data packets
which are generated at both end nodes. The relay receives
10000 interfered packets, each representing the sum of the
corresponding two packets transmitted simultaneously from
the two end nodes.

Fig. 5 shows the BER performance of channel coded PNC
in the two-IRS scenario when the two end nodes transmit
QPSK signals and compares it to the uncoded PNC case.
Each QPSK signal is the Cartesian product of two orthogonal
BPSK signals on the real and imaginary dimensions. The
message vectors at the end nodes are binary RA-encoded to
form the binary codewords which are then BPSK-modulated
and transmitted. As discussed before, no interference from the
real dimensions to the imaginary dimensions of the two nodes
will occur because of the IRS channel adjustment. Hence, the
relay decodes the real and imaginary dimensions separately
using binary PNC channel-network decoding to get the XOR
of the two message vectors of the two end nodes. As shown
in Fig. 5, the BER of the detected XOR data at the relay
decreases as the number of reflector elements of the IRS panel,
L, increases because of the increased number of reflected
rays in the case of L = 40. The figure shows the significant
improvement of channel coded PNC over the uncoded case
when the same energy per bit is used for both cases. The figure
also shows that arithmetic-based channel-network decoding for
IRS-aided PNC outperforms the modulo-2 based decoding,
which is consistent with the results in [47] for the binary case.

Fig. 6 shows the symbol error rate (SER) performance of
channel coded PNC in the two-IRS scenario when the two
end nodes transmit 16-QAM signals, and compares it to the
uncoded PNC case. Each 16-QAM signal is the Cartesian
product of two orthogonal 4-PAM signals on the real and
imaginary dimensions. The message sequences at the end
nodes are symbols drawn from the ring R4. The relay decodes
the real and imaginary dimensions separately using 4-ary PNC
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Figure 6: SER of 4-ary uncoded vs. RA-coded PNC, over R4,
using modulo-4 channel-network decoding using 16-QAM
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Figure 7: SER performance of modulo-4 sum vs. arithmetic sum for
4-ary RA-coded PNC, over the ring R4, in the two-IRS scenario

channel-network decoding to get the modulo-4 of the two
message vectors of the two end nodes. In Fig. 6, as the number
of reflector elements of the IRS panel, L, increases, the SER of
the detected modulo-4 data at the relay decreases. The figure
shows the significant improvement of 4-ary channel coded
PNC over the uncoded 4-ary case when the same level of
energy per data symbol is used for both cases. The figure also
shows that the SER decreases as the number of iterations of the
BP algorithm increases when using the derived update rules
in (51) and (53) in the backward and forward propagation.

Fig. 7 compares the performance of modulo-4 sum with
arithmetic based sum channel-network decoding when the 4-
ary channel coded PNC is applied in the two-IRS scenario. The
figure compares the performance of both decoding schemes for
a different number of iterations of the BP algorithm. The graph
shows that the BER performance of the two schemes is nearly
the same at 20 iterations. However, the arithmetic-sum-based
decoding provides some performance gain over the modulo-4
sum based one at 30 and 40 iterations. It is noted that the com-
plexity of the arithmetic-sum-based decoding is significantly
higher than the modulo-4 one as the probability vectors being
processed in the former has 7 states, while in the latter they
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have only 4 states. Moreover, the update rules of the arithmetic
scheme in (63) and (64) have higher complexity than those of
the modulo-4 scheme in (51) and (53). Therefore, the modulo-
q sum-based channel-network decoding is generally preferred
over the arithmetic when q > 2, in applications where receiver
complexity is of concern.

VII. CONCLUSIONS

In this article, the performance of IRS-aided PNC was
analyzed for one-IRS and two-IRS scenarios. It was shown
that IRS greatly improves the performance of TWRC systems
as it can remove the CPO between the end nodes. Detailed ap-
proximate theoretical error probability analysis was provided
for the two-IRS scenario which was verified using simulations.
We showed for the one-IRS scenario that only one IRS panel
is sufficient to jointly align the phases of the two received
signals from the two end nodes. An optimization problem
was formulated to compute the optimal feasible solution that
maximizes the amplitudes of the received signals at the relay
to minimize the PNC detection error probability. The problem
was solved using an efficient algorithm where the considered
search space (feasible set) was a Riemannian manifold due
to the non-convex IRS constraints. Finally, we demonstrated
that using the IRS technology to enhance the PNC systems is
effective in practical communication systems where channel
coding and higher-order modulations are mandatory. Using
IRS, we were able to design a low-complexity channel-
coded PNC with any modulation order without any significant
performance degradation as in conventional PNC scenarios.

REFERENCES

[1] P. Chen, Z. Xie, Y. Fang, Z. Chen, S. Mumtaz, and
J. J. P. C. Rodrigues, “Physical-layer network coding: An
efficient technique for wireless communications,” IEEE
Netw., vol. 34, no. 2, pp. 270–276, 2020.

[2] H. Pan, L. Lu, and S. C. Liew, “Practical power-balanced
non-orthogonal multiple access,” IEEE J. Sel. Areas
Commun., vol. 35, no. 10, pp. 2312–2327, 2017.

[3] Z. Sun, L. Yang, J. Yuan, and D. W. K. Ng, “Physical-
layer network coding based decoding scheme for random
access,” IEEE Trans. Veh. Technol., vol. 68, no. 4, 2019.

[4] A. Naeem, M. H. Rehmani, Y. Saleem, I. Rashid, and
N. Crespi, “Network coding in cognitive radio networks:
A comprehensive survey,” IEEE Commun. Surv. Tutor.,
vol. 19, no. 3, pp. 1945–1973, 2017.

[5] M. A. ElMossallamy, H. Zhang, L. Song, K. G. Seddik,
Z. Han, and G. Y. Li, “Reconfigurable intelligent surfaces
for wireless communications: Principles, challenges, and
opportunities,” IEEE Trans. Cognitive Commun. Netw.,
vol. 6, no. 3, pp. 990–1002, 2020.

[6] E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M.-
S. Alouini, and R. Zhang, “Wireless communications
through reconfigurable intelligent surfaces,” IEEE Ac-
cess, vol. 7, pp. 116 753–116 773, 2019.

[7] M. Di Renzo, M. Debbah, D.-T. Phan-Huy, A. Zappone,
M.-S. Alouini, C. Yuen, V. Sciancalepore, G. C. Alexan-
dropoulos, J. Hoydis, H. Gacanin, J. de Rosny,

A. Bounceur, G. Lerosey, and M. Fink, “Smart radio
environments empowered by reconfigurable ai meta-
surfaces: an idea whose time has come,” EURASIP J.
Wireless Commun. Netw., 2019.

[8] Y.-C. Liang, R. Long, Q. Zhang, J. Chen, H. V. Cheng,
and H. Guo, “Large intelligent surface/antennas (lisa):
Making reflective radios smart,” J. Commun. Inform.
Netw., vol. 4, no. 2, pp. 40–50, 2019.

[9] Q. Wu, S. Zhang, B. Zheng, C. You, and R. Zhang, “Intel-
ligent reflecting surface-aided wireless communications:
A tutorial,” IEEE Trans. Commun., vol. 69, no. 5, pp.
3313–3351, 2021.

[10] Q. Wu and R. Zhang, “Intelligent reflecting surface
enhanced wireless network via joint active and passive
beamforming,” IEEE Trans. Wireless Commun., vol. 18,
no. 11, pp. 5394–5409, 2019.

[11] C. Huang, A. Zappone, G. C. Alexandropoulos, M. Deb-
bah, and C. Yuen, “Reconfigurable intelligent surfaces
for energy efficiency in wireless communication,” IEEE
Trans. Wireless Commun., vol. 18, no. 8, pp. 4157–4170,
2019.

[12] C. Huang, R. Mo, and C. Yuen, “Reconfigurable intelli-
gent surface assisted multiuser miso systems exploiting
deep reinforcement learning,” IEEE J. Sel. Areas Com-
mun., vol. 38, no. 8, pp. 1839–1850, 2020.

[13] M. A. ElMossallamy, H. Zhang, R. Sultan, K. G. Seddik,
L. Song, G. Y. Li, and Z. Han, “On spatial multiplexing
using reconfigurable intelligent surfaces,” IEEE Wireless
Commun. Lett., vol. 10, no. 2, pp. 226–230, 2021.

[14] M. Zeng, X. Li, G. Li, W. Hao, and O. A. Dobre, “Sum
rate maximization for irs-assisted uplink noma,” IEEE
Commun. Lett., vol. 25, no. 1, pp. 234–238, 2021.

[15] X. Mu, Y. Liu, L. Guo, J. Lin, and N. Al-Dhahir, “Ex-
ploiting intelligent reflecting surfaces in noma networks:
Joint beamforming optimization,” IEEE Trans. Wireless
Commun., vol. 19, no. 10, pp. 6884–6898, 2020.

[16] G. Yang, X. Xu, and Y.-C. Liang, “Intelligent reflecting
surface assisted non-orthogonal multiple access,” in 2020
IEEE Wireless Commun. Netw. Conf. (WCNC), 2020, pp.
1–6.

[17] C. Pan, H. Ren, K. Wang, M. Elkashlan, A. Nallanathan,
J. Wang, and L. Hanzo, “Intelligent reflecting surface
aided mimo broadcasting for simultaneous wireless infor-
mation and power transfer,” IEEE J. Sel. Areas Commun.,
vol. 38, no. 8, pp. 1719–1734, 2020.

[18] Q. Wu, X. Guan, and R. Zhang, “Intelligent reflecting
surface-aided wireless energy and information transmis-
sion: An overview,” Proceedings of the IEEE, vol. 110,
no. 1, pp. 150–170, 2022.

[19] M. Al-Jarrah, E. Alsusa, A. Al-Dweik, and D. K. C. So,
“Capacity analysis of irs-based uav communications with
imperfect phase compensation,” IEEE Wireless Commun.
Lett., vol. 10, no. 7, pp. 1479–1483, 2021.

[20] X. Zhou, S. Yan, Q. Wu, F. Shu, and D. W. K. Ng,
“Intelligent reflecting surface (irs)-aided covert wireless
communications with delay constraint,” IEEE Trans.
Wireless Commun., vol. 21, no. 1, pp. 532–547, 2022.

[21] C. Pan, H. Ren, K. Wang, J. F. Kolb, M. Elkashlan,

15



M. Chen, M. Di Renzo, Y. Hao, J. Wang, A. L. Swindle-
hurst, X. You, and L. Hanzo, “Reconfigurable intelligent
surfaces for 6g systems: Principles, applications, and
research directions,” IEEE Commun. Mag., vol. 59, no. 6,
pp. 14–20, 2021.

[22] L. Lu and S. C. Liew, “Asynchronous physical-layer net-
work coding,” IEEE Trans. Wireless Commun., vol. 11,
no. 2, pp. 819–831, 2012.

[23] L. Yang, T. Yang, J. Yuan, and J. An, “Achiev-
ing the near-capacity of two-way relay channels with
modulation-coded physical-layer network coding,” IEEE
Trans. Wireless Commun., vol. 14, no. 9, 2015.

[24] H. Zhang, L. Zheng, and L. Cai, “Design and analysis
of heterogeneous physical layer network coding,” IEEE
Trans. Wireless Commun., vol. 15, no. 4, 2016.

[25] S. Shukla, V. T. Muralidharan, and B. S. Rajan, “Wireless
network-coded accumulate–compute-and-forward two-
way relaying,” IEEE Trans. Veh. Technol., vol. 65, no. 3,
pp. 1367–1381, 2016.

[26] L. Guo, Z. Ning, Q. Song, Y. Cui, and Z. Chen, “Toward
efficient 5G transmission: SER performance analysis
for asynchronous physical-layer network coding,” IEEE
Access, vol. 4, pp. 5083–5097, 2016.

[27] P. Chen, S. C. Liew, and L. Shi, “Bandwidth-efficient
coded modulation schemes for physical-layer network
coding with high-order modulations,” IEEE Trans. Com-
mun., vol. 65, no. 1, pp. 147–160, 2017.

[28] A. Schmidt, R. Schober, and W. H. Gerstacker, “Nonlin-
ear equalization approaches for physical layer network
coding,” IEEE Trans. Wireless Commun., vol. 16, no. 2,
pp. 825–838, 2017.

[29] H. Zhang and L. Cai, “Design of channel coded heteroge-
neous modulation physical layer network coding,” IEEE
Trans. Veh. Technol., vol. 67, no. 3, 2018.

[30] T. Peng, Y. Wang, A. G. Burr, and M. R. Shikh-Bahaei,
“Physical layer network coding in network mimo: A
new design for 5g and beyond,” IEEE Trans. Commun.,
vol. 67, no. 3, pp. 2024–2035, 2019.

[31] Z. Wang and S. C. Liew, “Coherent detection for short-
packet physical-layer network coding with binary fsk
modulation,” IEEE Trans. Wireless Commun., vol. 19,
no. 1, pp. 279–292, 2020.

[32] Y. Shao, S. C. Liew, and L. Lu, “Asynchronous physical-
layer network coding: Symbol misalignment estimation
and its effect on decoding,” IEEE Trans. Wireless Com-
mun., vol. 16, no. 10, pp. 6881–6894, 2017.

[33] T. Koike-Akino, P. Popovski, and V. Tarokh, “Denoising
maps and constellations for wireless network coding in
two-way relaying systems,” in IEEE Global Telecommun.
Conf., 2008, pp. 1–5.

[34] S. Liu, Z. Gao, J. Zhang, M. D. Renzo, and M.-
S. Alouini, “Deep denoising neural network assisted
compressive channel estimation for mmwave intelligent
reflecting surfaces,” IEEE Trans. Veh. Technol., vol. 69,
no. 8, pp. 9223–9228, 2020.

[35] A. Taha, Y. Zhang, F. B. Mismar, and A. Alkhateeb,
“Deep reinforcement learning for intelligent reflecting
surfaces: Towards standalone operation,” in 2020 IEEE

21st Int. Workshop Signal Process. Advances Wireless
Commun. (SPAWC), 2020, pp. 1–5.

[36] C. Liu, X. Liu, D. W. K. Ng, and J. Yuan, “Deep
residual learning for channel estimation in intelligent
reflecting surface-assisted multi-user communications,”
IEEE Trans. Wireless Commun., vol. 21, no. 2, pp. 898–
912, 2022.

[37] A. H. A. Bafghi, V. Jamali, M. Nasiri-Kenari, and
R. Schober, “Degrees of freedom of the k-user inter-
ference channel in the presence of intelligent reflecting
surfaces,” 2021.

[38] A. Papoulis and U. Pillai, Probability, random variables
and stochastic processes, 4th ed. McGraw-Hill, Nov.
2001.

[39] S. Nadarajah and S. Kotz, “Exact distribution of the
max/min of two gaussian random variables,” IEEE Trans.
Very Large Scale Integr. VLSI Syst., vol. 16, no. 2, pp.
210–212, 2008.

[40] C. Pan, H. Ren, K. Wang, W. Xu, M. Elkashlan, A. Nal-
lanathan, and L. Hanzo, “Multicell MIMO communi-
cations relying on intelligent reflecting surfaces,” IEEE
Trans. Wireless Commun., vol. 19, no. 8, 2020.

[41] X. Yu, D. Xu, and R. Schober, “MISO wireless com-
munication systems via intelligent reflecting surfaces :
(invited paper),” in 2019 IEEE/CIC Int. Conf. Commun.
in China (ICCC), 2019, pp. 735–740.

[42] M. A. ElMossallamy, K. G. Seddik, W. Chen, L. Wang,
G. Y. Li, and Z. Han, “RIS optimization on the complex
circle manifold for interference mitigation in interference
channels,” IEEE Trans. Veh. Technol., vol. 70, no. 6, pp.
6184–6189, 2021.

[43] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization
Algorithms on Matrix Manifolds. Princeton, NJ: Prince-
ton University Press, 2008.

[44] M. C. Pinar and S. A. Zenios, “On smoothing exact
penalty functions for convex constrained optimization,”
SIAM J. Optimization, vol. 4, no. 3, 1994.

[45] C. Liu and N. Boumal, “Simple algorithms for opti-
mization on riemannian manifolds with constraints,” Appl
Math Optim, vol. 82, no. 3, pp. 949–981, 2020.

[46] N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre,
“Manopt, a MATLAB toolbox for optimization on
manifolds,” J. Machine Learning Research, vol. 15,
no. 42, pp. 1455–1459, 2014. [Online]. Available:
https://www.manopt.org

[47] S. Zhang and S.-C. Liew, “Channel coding and decoding
in a relay system operated with physical-layer network
coding,” IEEE J. Sel. Areas Commun., vol. 27, no. 5, pp.
788–796, 2009.

16

https://www.manopt.org


Mahmoud AlaaEldin (M’21) received his B.Sc. in
Electrical Engineering from Alexandria University,
Alexandria, Egypt, in 2013. He received the M.Sc.
from the American University in Cairo (AUC),
Cairo, Egypt, in 2019. He is currently a Ph.D.
student and a researcher at Electrical and Elec-
tronic Engineering department, The University of
Manchester, Manchester, UK. Through his years at
AUC, Mahmoud was a graduate fellow and a teacher
assistant at the Electronics and Communications
department. He received a University Fellowship

from AUC in 2017 and 2018. In 2019, he received a research fellowship at the
University of Manchester under the Marie Sklodowska-Curie Actions grant
scheme, which is funded by the European Union’s Horizon 2020 research and
innovation program. His research interests include wireless communications,
signal processing, multiuser MIMO/OFDM systems, massive MIMO systems,
channel estimation and feedback, physical layer network coding, intelligent
reflecting surfaces, optimization, and applications of machine learning in
wireless communications.

Emad Alsusa (M’06–SM’07) completed a Ph.D. in
Telecommunications from the University of Bath in
the United Kingdom in 2000 and in the same year
he was appointed to work on developing high data
rates systems as part of an industrial project based at
Edinburgh University. He joined Manchester Univer-
sity (then UMIST) in September 2003 as a faculty
member where his current rank is a Reader in the
Communication Engineering Group. His research
interests lie in the area of Communication Systems
with a focus on Physical, MAC and Network Layers

including developing techniques and algorithms for array signal detection,
channel estimation and equalization, adaptive signal precoding, interference
avoidance through novel radio resource management techniques, cognitive
radio and energy and spectrum optimization techniques. Applications of
his research include cellular networks, IoT, Industry 4.0, and Powerline
Communications. Emad’s research work has resulted in over 200 journals
and refereed conference publications mainly in top IEEE transactions and
conferences. Emad has supervised over 30 PhDs to successful completion.
Emad is an Editor of the IEEE Wireless communication Letters, a Fellow of
the UK Higher Academy of Education, and a TPC Track Chair of a number
of conferences such as VTC’16, GISN’16, PIMRC’17 and Globecom’18, as
well as the General Co-Chair of the OnlineGreenCom’16 Conference. He is
currently the UK representative in the International Union of Radio Science,
and a Co-Chair of the IEEE Special Working Group on RF Energy Harvesting.
Emad has received a number of awards including the best paper award in
the international Symposium on Power Line Communications 2016 and the
Wireless Communications and Networks Conference 2019.

Karim G. Seddik (M’04–SM’14) received the B.Sc.
with an honor and M.Sc. degrees in electrical en-
gineering from Alexandria University, Alexandria,
Egypt, in 2001 and 2004, respectively, and the Ph.D.
degree from the University of Maryland, College
Park, MD, USA, in 2008. He is currently a Professor
in the electronics and communications engineering
department, at the American University in Cairo
(AUC) and the Associate Dean for Graduate Studies
and Research, School of Sciences and Engineering
(SSE) at the AUC. Before joining AUC, he was an

assistant professor at Alexandria University. His research interests include
applications of machine learning in communication networks, intelligent
reflecting surfaces, age of information, cognitive radio communications,
and layered channel coding. Seddik has served on the technical program
committees of numerous IEEE conferences in the areas of wireless networks
and mobile computing.

He is the recipient of the American University in Cairo Faculty Merit
Award for Excellence in Research and Creative Endeavors in 2021. He is
a recipient of the State Encouragement Award in 2016 and the State Medal
of Excellence in 2017. He is a recipient of the certificate of honor from the
Egyptian President for being ranked first among all departments in the College
of Engineering, Alexandria University in 2002. He received the Graduate
School Fellowship from the University of Maryland in 2004 and 2005, and
the Future Faculty Program Fellowship from the University of Maryland in
2007. He also co-authored a conference paper that received the best conference
paper award from the IEEE communication society technical committee on
green communications and computing in 2019.

17


	Introduction
	Related Work
	Motivations and Contributions

	System Model
	Error Probability Analysis of the IRS-PNC
	Optimal detector
	Sub-optimal detector with error probability calculations
	Averaging Error Probability over the distribution of Lg

	Phase Shifts Optimization of a Single-IRS-PNC
	IRS-PNC for Higher Modulation Orders
	Modular-Sum-based Channel-Network Decoding
	Arithmetic-sum based channel-network decoding

	Simulation Results
	Conclusions
	References
	Biographies
	Mahmoud AlaaEldin
	Emad Alsusa
	Karim G. Seddik


