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Abstract—We characterize the achievable three-dimensional
tradeoff between diversity, multiplexing, and delay of the
single antenna Automatic Retransmission reQuest (ARQ) Z-
interference channel. Non-cooperative and cooperative ARQ
protocols are adopted under these assumptions. Considering no
cooperation exists, we study the achievable tradeoff of the fixed-
power split Han-Kobayashi (HK) approach. Interestingly, we
demonstrate that if the second user transmits the common part
only of its message in the event of its successful decoding and
a decoding failure at the first user, communication is improved
over that achieved by keeping or stopping the transmission of
both the common and private messages. Under cooperation, two
special cases of the HK are considered for static and dynamic
decoders. The difference between the two decoders lies in the
ability of the latter to dynamically choose which HK special-case
decoding to apply. Cooperation is shown to dramatically increase
the achievable first user diversity.

I. INTRODUCTION

The diversity and multiplexing tradeoff (DMT) framework
was initiated by Zheng and Tse [1] in standard Multi-Input
Multi-Output (MIMO) channels. EL Gamal et al. extended
Zheng and Tse’s work using Automatic Retransmission re-
Quest (ARQ) in delay-limited single link MIMO channels [2].
The authors in [2] showed that the ARQ retransmission delay
can be leveraged to enhance the reliability of the system at
a negligible loss of the effective throughput rate. In addition,
the authors in [3] considered cooperative schemes in ARQ
relay networks. This work explores the achievable diversity,
multiplexing, and delay tradeoff of the outage limited single
antenna ARQ Z-interference channel (ZIC) [4] in the high
signal-to-noise ratio (SNR) asymptote. In particular, we extend
the tradeoff studied in [2] to the two user ARQ fading ZIC
setting for both non-cooperative and cooperative scenarios.

This work first discusses a non-cooperative ARQ protocol
using the fixed-power split Han-Kobayashi (HK) approach
[5], [6]. We stipulate that the second user transmits only
the common part of its message if it receives a positive
acknowledgement (ACK) while a negative ACK (NACK) is
received at the first transmitter. By considering two special
cases of the HK splitting, a Common Message Only (CMO)
scheme and a Treating Interference As Noise (TIAN) scheme
(i.e. only a private message is sent from the second transmitter)
[6], we show the superiority of our transmission policy over
the other policies of continuing or stopping the transmission
of both the common and private messages under the stated

feedback states. We assume that the splitting parameters are
determined according to the outage events at the end of
the transmission block of the same information message at
both users in order to optimize the achievable Diversity Gain
Region (DGR) [6]. The channel state information (CSI) is
assumed to be perfectly known at the receivers but is unknown
at the transmitters. Therefore, we assume that the chosen
splitting parameters remain fixed for fixed rates, interference
level, and retransmission delay; the second transmitter can
only continue or cease the transmission of its common or
private message.

Next, we consider a cooperative ARQ scenario where the
second transmitter assists the first one in relaying its message
in the event of a NACK reception at the first transmitter. The
cooperative protocol divides into static decoding and dynamic
decoding. Under static decoding, we solve for the achievable
tradeoff by tracing the maximum of using either the CMO or
the TIAN schemes considering the relaying scenario. Under
dynamic decoding, the decoder of the first user dynamically
changes its decoding algorithm to either consider the CMO
or the TIAN approach according to the channel conditions.
Finally, we show the superiority of the dynamic decoding
scheme over the static one.

We adopt a coherent delay-limited (or quasi-static) block
fading channel model where the channel gains are assumed
fixed over the transmission of the same information message.
By doing this, we focus on the ARQ diversity advantage
without exploiting temporal diversity.

II. SYSTEM MODEL

We consider a two user single antenna Rayleigh fading ZIC
model as shown in Fig. 1. Users always have information
messages to send. Each user in our model employs an ARQ
error control protocol with a maximum of L transmission
rounds. The information message from each transmitter is
encoded into a sequence of L vectors (blocks), {x;; € CT .
t=1,2and [ = 1,---, L}, where the transmission of each
vector takes 7' channel uses. Each decoder is allowed to
process its corresponding received signal over all [ received
blocks. Each receiver sends an ACK back to its corresponding
transmitter when decoding is successful. A NACK is sent if
decoding fails. The ARQ feedback channel is assumed to be
error-free and of negligible delay.



Fig. 1: The ZIC model.

We consider the following ARQ protocol. When both trans-
mitters receive an ACK, they each proceed to send the first
block of their next messages. If TX1 receives an ACK while
TX2 receives a NACK, TX1 will cease its transmission until
TX2 receives an ACK. When TXI1 receives a NACK for its
message, it begins the transmission of the next block of its
current message; while the behavior of TX2 varies according
to its feedback outcome and the used ARQ protocol as detailed
in the next sections. The reason for differentiating between
the case when TX1 receives an ACK while TX?2 receives a
NACK and the reverse case is that the first user message
is not decoded at the second receiver but not vice versa.
When the maximum number of protocol rounds L is reached,
both transmitters start transmitting the first block of their next
messages regardless of the feedback outcome. Error at each
user occurs due to any of the following two events. Either
L transmission rounds are reached and decoding fails or the
decoder makes a decoding error at round [ < L and fails to
detect it (undetected error event).

The received signal vectors are given by

Y1, = p11hiixy g + p21haixe; +ny
Y2,1 = po2hooxg ; +mng g,

@

where {y;;,n;;} denote the received vector and the noise
vector at RXi, respectively. The noise vectors are modeled
as complex Gaussian random vectors with zero mean, unit
variance, and i.i.d. entries. They are also assumed to be tem-
porally white. We use {h; ; : ¢,j = 1,2} for the channel gain
between transmitter ¢ and receiver j. The channel gains are
ii.d. complex Gaussian random variables with zero mean and
unit variance. They are assumed to remain constant over the
L transmission rounds and change to new independent values
with each new information message. We use a per-block power
constraint such that E [£||z;|[?] < p, ie., the constraint
on the average transmitted power in each transmission round
of the ARQ protocol is the same. The parameter p takes on
the meaning of average SNR per receiver antenna. We also
parameterize the attenuation of transmit signal 7 at receiver
J using the real-valued coefficients p;; > 0. To simplify our
results, we set 2, = p3, = 1 and pu3;, = p®~'. The parameter
[ represents the interference level, 5 > 0.
We consider a family of ARQ protocols that is based on
a family of code pairs {C1(p), Ca(p)} with first block rates
Ri(p) and Ry(p), respectively, and an overall block length
TL. The individual error probability at RXi is P.,(L, p) for
i = 1,2. For this family, the first block multiplexing gains 7;
and the effective ARQ diversity gains d; (L) for L transmission
rounds are defined as
r; 2 lim M

A IOg{Pei (va)}
p—oo log p ’

and d;(L) £ — lim
log p

p—>00

@

The long-term average throughputs of the ARQ protocol for

TX1, n1(p), and for TX2, n(p), are characterized as in [2],
[7]. The effective ARQ multiplexing gains are defined as

2 M) rey 2 lim n2(p) 3)

p=o0 log(p)

r =
L poo log(p)

III. THE NON-COOPERATIVE ARQ PROTOCOL

We consider here the use of the HK approach at TX2.
Specifically, TX2 maintains a private message, with rate
So = s9log p, and a common message, with rate T = 5 log p.
Hence, 7o = s9 + 19, S9,t2 > 0, and 0 < r; < 1. At RX1, we
consider a joint typical-set decoder applied to the message of
TXI1 and the common message of TX2. At RX2, joint-typical
set detection is carried out for both the private and common
messages of TX2. For TX2, we parameterize the ratio of the
average private power to the total average power as

a €[0,1], b>0. “4)

1+ pb
Thus, the transmitted powers of the common and private
messages, in the high-p scale, can be written as'

_r
1+ pb

When the two transmitters receive a NACK at round [, they
both begin the transmission of the next block of their current
messages. If TX1 receives a NACK while TX2 receives an
ACK, we stipulate that TX?2 stops sending its private message
and keeps sending the common one until TX1 receives an
ACK. We motivate this transmission policy by observing two
special cases of the HK-splitting. The first special case is when
TX2 uses the CMO scheme [6]. In this case, the best that TX?2
can do when receiving an ACK while TX1 receives a NACK is
to keep sending the same message until TX1 receives an ACK.
This way, RX1 will accumulate more joint mutual information
hence reducing the probability of the joint outage event at RX1
when joint decoding is performed.

The other special scenario is the TIAN scheme obtained
from the HK approach by setting b = 0 and ¢, = 0 [6]. Under
the TIAN scheme, we expect the diversity at RX1 to improve
if TX2 ceases the transmission of its current message when
receiving an ACK while TX1 receives a NACK since this
provides for less interference. The HK scheme with generic
splitting parameters lies midway between these two special
schemes and it is for this reason that we stipulate the stopping
of the private message when a NACK is received at RX1. Note
that, the average transmitted power at TX1 or TX2 will not
be affected by either continuing or stopping the transmission
of the same message after receiving an ACK and until the
other transmitter receives an ACK as the probabilities of such
events are very small for the case of the high-p scale. The
multiplexing rate of the both users will not be affected for
the same reason [7]. We can demonstrate the superiority of
our transmission policy over other approaches which consider
keeping or stopping the transmission of both the common and
private messages of TX2 when it receives an ACK while TX1
receives a NACK. The rate regions of these approaches can
be shown to be subsets of the rate region of our approach [7].

PZ,private = and PZ,common = pP- S

"Throughout the work, we will use = to denote exponential equality, i.e.,

f(z)izb means that lim, oo % =b, S and 2 are defined similarly.



We demonstrated in [6] that the CMO scheme is a singular
special case of the HK approach. So, we now state the
achievable tradeoff of the non-cooperative ARQ protocol using
the HK and the CMO approaches as they are distinct.

Theorem 1. The Achievable diversity, multiplexing, and delay
tradeoff of a two-user Rayleigh fading ZIC under the use
of the non-cooperative ARQ protocol with a maximum of
L transmission rounds for the HK approach and using our
transmission policy is

)

d1 k(L) i wdfio 2"
— min min -
LHK ie{1,2,-,L} i—1]

—+ I‘ﬂin{dll’HK(L7 i),dlngK(L,i)}}, where,

r r L ntilB-yt *
L—i] ’ L
dioux(L,i) =

T i[B—b]T + . . .
[17%] . if ri+ta > (L—d)B+ib> Lb
i+ i+
[1- ] o - =]
if Lb<mi+ta < (L—1%)8+1b
[1 7“1+t2}Jr [ ritta + . <Lb

. ro1+ rg —t +
and, dgﬂHK(L):mm{[l;] ,[17%711] }
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d11,mK (L, 1) = max { [1 -

©)
While the achievable tradeoff under the CMO scheme is

1_7“1+7"2]++ {5—T1+T2]+}

L

d1,cmo (L) = min { [1 - r—l] * , 7 7

dz,cmo (L) = [1 - %]+ .

(7

Proof: Following the footsteps of [2], we can show that
the individual error probabilities are exponentially equal to
their respective outage probabilities for sufficiently large 7.
The use of joint typical-set decoding limits the probability
of the undetected error event at any round | < L to an
arbitrarily small value. Following the same techniques in [1],
the probability of decoding failure at round [ = L at either
RX1 or RX2 is exponentially equal to the probability of the
corresponding outage event at the end of the L transmission
rounds. Thus, we have for ¢ = 1,2

Pey(L,p) = p~ k) = Poyei(L, p) = p~douei) 0 8)

where Poyuti(L) is the individual outage probability at RXi
and doy i (L) is the diversity gain associated with Py i(L).

We then derive the individual outage probabilities for the
non-cooperative  ARQ-ZIC system. When the accumulated
mutual information over the consecutive rounds at RX1(RX2)
is smaller than the first block rate R;(Rs), an outage occurs.
It is sufficient, without loss of optimality, to assume that the
input codewords are Gaussian distributed [2]. Thus, the mutual
information is identical over the protocol rounds. Let us define
A; and B, as the outage events at RX1 and RX2 at round I,
respectively. For the HK scheme, the outage region at RX2 at

round [ = L is given by

By = {;m : Llog (1 + |ha2|?p) < Rz, or Llog (1 + |ha2|?p) < T2,

|haz|?p
L1 1+ ——— | < Ra—1T5 .
or Og( + 14 pb 2 2

©
The outage event L log (1 + |h22|2p) < Ty is a subset of the
outage event L log (1 + |h22|2p) < Rs and can be eliminated.
So, the outage probability at RX2 can be shown to be

—min{[l—%rra[l_%_b]Jr} *d2,HK<L).

Pout,2(L) = p =p 10)

Thus, we have proved the result for da k(L) given in (6).

We define C; as the event that TX2 receives an ACK at
round i and receives a NACK at round 7 — 1, 2 thus, C; =
{Bi-1,Bi}. The outage region at RX1 given C; at round | =
L is given by

— h 2
AL\&-: hi1,ho1 @ ilog 1-‘,—%
14 [ha1]?p
1+pb

h 2 h 2 B
+(L—i)log(1+|h11\2p) <Ry or ilog <1+|11p+21|p

|ho1|2pP
1+ 1+pb

+ (L —i)log (1 + |h11]?p + |h21\2p3) <Ri+Ts%.

an
The outage probability at RX1 can be derived as follows,

L
Pout1 (L) = > Pr(AL|€;)Pr(€;) = p~Frmx (L),
=1

Using the outage events given in (11), we can show that [7]
13)

12)

Pr(AL|€;) = p~ min{din,uk (L:d).di2 nk (L)}

where, di1 uk(L,4) and diauk(L,7) are as given in (6).
The probability of the event C; can be derived as follows,

Pr(€;) = Pr(B;_1)Pr(B;|Bi_1) = Pr(B;_1) = p~ 28— (14
where, Pr(B;|B;_1) = 1. Using (13) and (14) in (12), we get

Pous1 (L) = XL:p*{d2,HK(i*1)+mi“{d11,HK(L»i)adIQTHK<L7i>}}_ 15)
i=1
In the high-p scale, the minimum negative exponent dominates
the previous summation. Thus, we proved the result for
dy ux (L) given in (6).
As for the CMO scheme, the outage regions at RX1 and
RX2 at round [ = L can be given as follows.

A = {hu,hm : Llog (1 + |h11]?p) < R1

(16)
or Llog (1 + |h11]?p + \h21|2p6) < Ri+ Rz}

By = {haz : Llog (1 + |ha2|?p) < Ra}.

Using these outage regions, the results for the CMO scheme
given in (7) are deduced.

Following similar steps as in [2], the effective multiplexing
gains 7., and 7., are equal to the first block multiplexing gains
r1 and ry, respectively, and hence the proof is completed (See
full proof in [7]). |

2A NACK at round i — 1 implies a NACK at every round I < i — 1.



IV. THE COOPERATIVE ARQ PROTOCOL

Under cooperation, TX2 assists in relaying the message of
TX1 in the event of a NACK reception at TX1. Here, we first
consider a static decoding scheme where the decoding scheme
at RX1, whether using the CMO or the TIAN decoding, is
fixed and determined a priori according to the interference
level $ and the multiplexing gains r; and ro. Next, we will
consider a dynamic decoding scheme where RX1 dynamically
decides at the beginning of each new transmission to use either
the CMO or the TIAN decoding according to the channel
gains, the interference level, and the multiplexing gains.

For the two cooperative ARQ schemes, if TX1 receives a
NACK, TX2 will start listening to TX1 to decode its message
regardless of its own feedback. Notice that we assume here a
link exists between TX1 and TX2. We denote the time TX?2
takes to decode TX1 message by 7”. The following relation

holds, R
;. 1
7= min {T’ [mgrz(l T M } !

where h is the channel gain between TX1 and TX2.

Once TX2 has decoded TX1’s message, it starts relaying
this message using a codebook Ci(p). If TX2 decodes the
TX1’s message in T’ symbols, then it assists TX1 by relaying
its message in the remaining time, T — T" [7].

a7

A. Cooperative ARQ with Static Decoding

We characterize here the achievable DMT of the cooperative
ARQ scheme with static decoding considering a maximum of
two transmission rounds for analytical tractability. We restrict
ourselves to the use of CMO and TIAN schemes for simplicity.
We will use the superscript ¢ to refer to the cooperative setup.

Theorem 2. The achievable DMT of the cooperative ARQ
with static decoding for L = 2 under the use of the CMO
scheme is given by

di cmo(2) = min {dﬁ,CMO(% dfz,CMO(Q)} ,  where,
diy,cmo(2) =

S i >28
m1n§1+(lrj_m”2 3”}, zjl+5<r1<25

min 2737—1273/371 14 8- , ifr <

1+B
(18)

+
dis,cmo(2) = {1 - -;-1“2] {ﬁ— nt TQ}

d5 cmo(2) = min {d21,CMO(2)> d22(2)} ,
ds1,cmo0(2) =
min{[l T I T S e 77'2}4'} +[1—ra]T

a2 = [1- 2]

And, where,

2
For the TIAN scheme, the achievable DMT is
[1- #r if >
2[1—1ﬂ1]+7 tfr1< ,B>1
di rian(2) = [1—r]T+[8—r]" if ™ < ,B<1
%, lf7”1>2,§<r1<ﬁ
L—r]t+[B—m]", fr <3 £<r<p
d3 rran(2) = min {dgl,TIAN(2)7 d§2(2)}

where, dsy r1an(2) = [1 - ro]t+ 1 —r — BT,

19)

The overall achievable DMT curve, either between RX1 diver-
sity and first user multiplexing gain r1 or between RX2 diver-
sity and second user multiplexing gain rs, of the cooperative
ARQ with static decoding scheme for L = 2 is the maximum of
the achievable DMT using the CMO and the TIAN approaches.

Proof: 1t can be shown that the error event at RX1
is dominated by the outage event at the end of the second
transmission round As [2], [3], [7]. Thus, the probability of
this outage event is exponentially equal to the error probability
at RX1. We now derive this outage probability for the CMO
scheme. Let us state the corresponding outage event as

ﬁg = {S‘T': {01 U 02}},

T/
Frr = {h: = log (1+1h%p) = Rl}

where,

T+T
01 = {h117 ha : log (1 + |h11]p)

1+ |h1120+ |h21\2pﬁ> < Rl}

T/
02 = {h117h21 i (1 + k11|20 + |h21)?p ) + ?bg (1+ h11]?p)
log (1 -+ k112 + Bt [p”) < Ry + Ra |-
(20)

Defining f = L, |ny]? = p7%9, and |h|*> = p, the
high-p approximation of the previous events can be written as

Fpo={u: f1—u]" =m}
01 = {7117’721,f S+ L —]”
+(1—f)maX{[1—711]+7[5—W21]+}<7’1} @1
02 = {71177217f (2= max{[l —ml*, [5—721]+}
+f =" <r1+r2}.

Since we have max Pr(0;) = p‘divaMO(z), thus,
f€lr,1]

min
Y11,721,4€0

di1,cmo(2) = {711 + 721 + u} (22)

By checking the above constraints for the different values
of r1, we can show that [7]

7%7%7 if ™ 225
di1,cm0(2) = fem[Ti?l] 2+ (1{)% -5 Q= f)f<r <28
C2Hs- - i <(1-1)B

(23)

The function 2 — 3 — ’"71 is monotonically increasing in f,
thus, its minimum is at f = ry. For r; < 23, we have

g4 (=HB-m {jff oo f>1- 1

2+ 8— LU f<1— 12

df1,cmo(2) = e min { r
€[r1,1] 7o B

(24)

The function 2 + % — T71 is a concave function over
felr,1], hence it attains its minimum at the edges. Thus,
for r; > , the function 2 + (1]1# — I attains
its minimum at f =r; or f = 1. On the other hand, when
rp < 1-—TL it attalns its minimum at f = 1—2t or f = 1. The
function 2 + 8 — - 7 Tfl is also monotomcally increasing
in f over f € [r,1] and attains its minimum at f = 7.




Notice that the condition f < 1 — % implies that 1 < 1— %
since r; < f < 1. Based on these arguments, we can easily
derive the equation for df; ¢\;o(2) given in (18). Using similar
arguments, we can derive the result for df, o\ (2), where

max Pr(03) = p_d§2,CMO(2).
fe€lr,]
For the TIAN scheme, the outage event at RX1 at the end

of the second transmission round can be expressed as

Ay = {Fr/,03}, where,

h11)? T
03={h117h21210g(1+ a1 |p )+*10g(1+|h11|2p)‘

1+ |h21‘2pﬁ T

/

T
log (1 + |h11?p + \h21|2Pﬁ) < Rip.

T
+
(25)

Using similar arguments, we derive the result for df 1, AN (2).

For both the CMO and TIAN schemes, it can be shown
that the error event at RX2 {€5} is dominated by the events
{€4,A1,B2} and {€4, A1, B1}. The former event represents
the error event at RX2 when RX1 receives an ACK at the end
of round 1, while the latter represents the error event at RX2
when RX1 receives a NACK at the end of round 1 [7]. Thus,

Pr(&2) = Pr(A1, B1) + Pr(A1, Ba) = Pr(A1)Pr(B1) + Pr(B2), (26)

as the events A; and By are independent, as well as the events
Ay and By. Also, Pr(A;) = 1.

Using the definitions for A; and B, as in (9), (11) and (16),
the results for d§ oyo(2) and d§ 1o (2) can be derived. ®

B. Cooperative ARQ with Dynamic Decoding

In this case, each time both TX1 and TX2 begin to transmit
new messages, RX1 decides to use either the CMO or the
TIAN decoding according to the channel conditions revealed
to it, hy; and ho;. The decoding scheme is no longer known a
priori but is dynamically decided each time users transmit new
messages. It is worthwhile noticing that the second transmitter
has no CSI to dynamically change its splitting parameters
according to the channel conditions [7].

Theorem 3. The achievable DMT of the cooperative ARQ
with dynamic decoding for L = 2 is characterized by

d5 pp(2) = min {d, pp(2), iy pp ()}, where
dil,DD(z) = dﬁ,CMO(Q)
diTIAN(Q)7

dis,cnmo0(2),

if o> f
if o < B, 11272

d$5 pp(2) = 1t
12,DD 57%] . ifre<B Ll<ri<r
A=—r]T+[B=rt, if ra<B, 11 < min{%,rg}.
And, d5 pp(2) = min {d$) pp(2),dsapp(2) ), where,

d5y pp(2) = [1 = r2]* + max {d1 cmo (1), d1,rran(1) }
c [ _ T2 +
d3s pp(2) = [1 2 ] )
27

where, dl,CMO(l)r dl,TIAN(l)’ dfl,CMo(Q)v 52,0MO(2)’ and
d‘iTIAN(2) are as given in (7), (6), (18), and (19), respectively.
Recall that we can get dy tian(1) from (6) via substitution
with b= 0 and t, = 0.

2 ‘
1. 8 --di,omo(2)
_ 1.6} <-df cno(2)
‘?1 4 =d1,T1AN (2)
__E 1.2t —A—(liTIAN(Q)
- 1 <-df pp(2)
$o0.8f o
j=)
=o.6f 1
~o.af 4
0.2} 1
% 6.1 0.z 0.3 0.4 0.5 0.6 0.7 0.8 0.9

r1 (User 1 multiplexing gain)

Fig. 2: The DMT of user 1 using the different non-cooperative and
cooperative ARQ schemes for 8 = 1.3, 7o = 0.9, and L = 2.

Proof: (Sketch) Based on the dynamic decoding scheme,
outage at RX1 at the end of round 2 can be described as
ﬁg = {ITTH {01 U 02}, (93}, where gT/, Ol, OQ, and 03 are
as given in (20) and (25). The rest of the proof follows from
analyzing the outage region above by analogy to the analysis
of the static decoding scheme in the previous subsection and
is omitted due to space limitations (See full proof in [7]). ®

To summarize our work, we show the DMT of the first user
under the use of all the previously mentioned ARQ schemes
for L = 2 in Fig. 2. It is obvious that the performance of
the cooperative ARQ with dynamic decoding is better than
the achievable performance of its static counterpart for some
values of the first user multiplexing gain r;.

V. CONCLUSION

We characterized the achievable diversity, multiplexing,
and delay tradeoff for the outage limited two user single
antenna Rayleigh fading ARQ ZIC under the use of non-
cooperative and cooperative ARQ protocols. Under coopera-
tion, we characterized the achievable tradeoff using static and
dynamic decoders. We used the well-known HK approach as
well as two special cases of it, where only a common or a
private message is transmitted, to derive achievability results.
Our characterization comes in closed-form expressions of the
individual diversities as a function of the maximum number
of transmission rounds (maximum delay), multiplexing gain
pairs, interference level, rate and power splitting parameters.
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