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Abstract—The vast proliferation of wireless data networks
demands efficient resource allocation strategies to accommodate
the increasing number of devices and the dynamic nature of
cellular networks. As future networks face challenges like severe
congestion and varying traffic demands, achieving satisfactory
Quality of Service (QoS) and Quality of Experience (QoE) re-
quires dynamic management. This paper introduces an improved
self-optimization framework that adopts deep reinforcement
learning (RL) to dynamically adjust key network parameters,
such as handover settings, power levels, and MIMO technology.
This approach significantly enhances network throughput by
effectively balancing load distribution. The proposed framework
explores the trade-off between system complexity and perfor-
mance gains, demonstrating that an agent tailored to optimize a
frequently recurring single scenario can outperform generalized
agents under specific network conditions.

Index Terms—Reinforcement Learning, Cellular Networks,
Machine Learning, Load Balancing,

I. INTRODUCTION

The surge in wireless data consumption from various de-
vices necessitates the optimization of resource allocation in
cellular networks. To support high-speed, low-latency appli-
cations and accommodate numerous connected devices [1],
modern networks must manage resources effectively. Cellular
networks aim for massive connectivity and data rates of up to
10 Gbps for low mobility and 1 Gbps for high mobility [2].
Future networks are expected to face severe congestion due to
increased users, requiring high adaptability, self-organization,
and rapid adjustment to maintain quality of service (QoS)
and quality of experience (QoE). Achieving network stability
while automatically optimizing parameters is complex and
involves dynamic self-optimization based on traffic load. One
approach is to modify cell boundaries and power levels to
balance user distribution and enhance data throughput. This
is achieved by altering cell individual offset (CIO) values
[3], and/or dynamically adjusting base station power, which
can effectively balance network load [4]. On another note,
network operators prioritize optimizing power consumption.
Since MIMO technology is a primary power consumer in
cellular networks, studies [5], [6] have explored the poten-
tial energy savings from dynamically enabling and disabling
MIMO based on network load.

In this paper, we examine the work introduced in [6] to mod-
ify the proposed approach and achieve better gains. Reinforce-
ment Learning (RL) is adopted as a solution due to its ability
to optimize long-term goals without requiring training data.
In [6], a robust framework for the self-optimization of cellular
networks was introduced using deep reinforcement learning.
The goal is to improve network performance by balancing
user load, enhancing coverage, improving user experience,
and reducing energy consumption. The system introduced a
Double Deep Q-Network (DDQN) agent followed by a Twin-
Delayed Deep Deterministic (TD3) agent to adjust handover
parameters, power levels, and MIMO technology. In this paper,
we focus on redesigning the RL agents in [6] by introducing an
additional continuous-action TD3 agent that is optimized for a
single, frequent scenario. During the simulation, we observed
that a certain case of the DDQN decision occurs with a higher
probability than other cases. We considered this case in the
training and optimized it in terms of power and CIO values
using the TD3 agent. A notable improvement was observed
when we used the scenario-aware agent when the state for
which it was specifically trained for is encountered, revealing
improved performance. This approach will result in a total of
3 agents, which will increase the overall system complexity,
especially if multiple common scenarios exist, but it will be in
favor of a significant increase in the overall network reward.
To that end, it is noted that there is a trade-off between the
number of agents used in the algorithm and the gain obtained.
Optimizing network parameters with the scenario-aware agent
outperforms the general agent optimizing all network scenarios
in [6], making it an appealing option when designing the
ML algorithm to self-optimize network parameters, especially
when a scenario occurs more dominantly than others.

A. Related Work

As mentioned previously, this work aims to redesign the
learning algorithm structure described in our previous work
[6]. Building on it, we address three key network management
controls: Cell Individual Offsets (CIOs), transmission power
levels, and the activation of MIMO features. We compare
the training of TD3 agents on multiple cases versus a single
case of environment statuses, and how this affects the overall



network performance and results. The most relevant related
works to this study focus on energy saving, load balancing
issues, and different approaches for training RL agents.

The issue of energy-saving in cellular networks has been
widely studied. For instance, in [7], the authors explored the
dynamic operation of cellular base stations, proposing the
deactivation of redundant stations during low-traffic periods,
which leads to significant energy savings. In another study,
[8] addressed energy optimization in mobile networks using
a neural network-based algorithm, which activates the MIMO
feature only when necessary to maintain satisfactory user qual-
ity of experience (QoE). Load-balancing techniques are also
widely discussed in the literature. In [3] and [9], the authors
developed an RL framework optimizing cell parameters to
distribute traffic load evenly across cells. They focused on
adjusting the CIOs of adjacent cells to encourage cell-edge
users to switch from overloaded cells to those with lighter
loads. Additionally, in [10] and [11], the authors presented
an RL agent designed to control both the transmitted power
of eNBs and the CIOs to aid in balancing traffic loads. The
goal of the RL controller in these studies was to improve the
downlink (DL) total throughput while minimizing the number
of users who lack coverage.

In this work, we implement a layered RL agent using
DDQN and TD3 algorithms [12], [13]. This layered approach
is a natural extension of our previous DDQN and TD3 agents
presented in [5], [6], [9]-[11]. However, our work focuses
on evaluating the performance of the RL agent when trained
on a single state of the environment, optimizing that state to
take better actions compared to an agent trained on all states
of the environment. A somewhat similar idea is discussed in
[14], where the concept of role-oriented RL agents that can
identify sub-tasks was introduced. This specialization facili-
tates performance improvement. The results show that grad-
ually specialized roles are indispensable for performance en-
hancement. A HASSLE (Hierarchical Assignment of Subgoals
to Subpolicies Learning) algorithm was introduced in [15]
causing significant advancement in hierarchical reinforcement
learning (HRL). HASSLE automatically discovers subgoals
and develops specialized low-level policies, allowing high-
level policies to set abstract subgoals based on observation
clustering. The algorithm demonstrated superior performance
compared to flat reinforcement learning methods in a simu-
lated office navigation task, efficiently learning near-optimal
policies. Additionally, this approach was proven to yield better
performance in [16] in cases where useful subgoals can be
identified and subtasks defined to achieve them.

B. Paper Contribution

The contribution of this paper can be summarized as fol-

lows:

o We present an improved RL-framework that controls han-
dover parameters, transmission power levels, and MIMO
scheme to maintain load balance within cellular networks
to avoid both congestion and underutilization.

« We propose an improved hierarchical approach to make
the control decisions, such that MIMO scheme control is

decided first, affecting the decisions regarding the CIO
and power level controls.

o We implement a scenario-aware RL agent approach that
works along with the original agent in an alternating
fashion based on the MIMO scheme decisions.

II. SYSTEM MODEL

The main scenario is for a cellular system that serves a total
of U User Equipment (UEs). The system comprises N base
stations (eNBs).

A. Evolved Node B (eNodeBs ”eNBs”)

Each eNB emits a power level P,, € [Ppin, Pmax] dBm. At
different times ¢ = 0,1, 2, 3, .. ., each UE measures the Signal-
to-Interference-plus-Noise-Ratio (SINR) of the near eNBs and
attaches to the cell with the highest SINR. An eNB can be
over-utilized or under-utilized. This is determined according
to the value of the eNB utilization p,,:
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where U,, is the number of UEs served by the nth eNB, K ,
is the number of Physical Resource Blocks (PRBs) that serve
the ¢th user in the nth eNB, B,, is the bandwidth of the nth
eNB and Bpgg is the bandwidth of one PRB (=180 KHz in
LTE). p,, is the ratio of the total number of PRBs that the nth
eNB must provide in order to serve the associated users to
the maximum number of PRBs it can provide. Consequently,
an underused eNB is roughly indicated by p, < 1, whereas
an overutilized eNB is indicated by p,, > 1. In contrast to
overutilization, underutilization enables the eNB to provide
reasonable rates for all of its associated customers.

Additionally, cells have an important power property which
is the Cell Individual Offset (CIO) used to control the handover
decision. Handover from cell ¢ to a neighboring cell j occurs
if [17]:

(D
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where RSRP; and RSRP; are the measured Reference Signal
Received Power from eNBs ¢ and j, respectively. 0;_; is
the CIO value of eNB ¢ with respect to eNB j and 0;_;
is the CIO value of eNB j with respect to eNB 7. Hys is a
hysteresis value to reduce the likelihood of recurrent handover
requests brought on by small variations in signal quality.
Moreover, network operators can enable or disable the MIMO
feature for each eNB, significantly impacting the received rate.
Enabling MIMO can reduce the BER through spatial diversity
or increase the data rate via spatial multiplexing, improving
UE QoE. However, MIMO is an energy-intensive feature.

B. User Equipment (UEs)

Each UE moves randomly in the network and is contin-
uously seeking a better cell (based on the higher SINR), at-
taching itself to the superior cell when it finds it. Additionally,
the connected cell receives periodic reports from the u** UE’s
channel quality indicator (CQI) ¢,,, which is a discrete metric.
The standard states that ¢,, € {0,1,...,15}. If ¢, = 0, the



u!™ UE is not covered. Higher channel quality correlates with
a higher CQI value [17], [18].

C. Control Agents Architecture and Decision Making

In this work, we improve upon the scheme presented in [6]
by adopting two existing RL algorithms in a layered fashion.
The first one is the Double Deep Q-Network (DDQN) [19],
which is used for discrete action spaces (MIMO on/off in our
case). The second one is Twin Delayed Deep Deterministic
Policy Gradient (TD3) [20], which is used for continuous
action spaces (transmission power and CIOs in our case). Our
main focus in this work is improving the performance of the
continuous action space agent.

We added a third scenario-aware TD3 agent which serves
the same purpose as the first TD3 agent: controlling transmis-
sion power and CIOs. However, it is specifically designed to
operate only when all eNBs are set to turn their MIMO feature
on. This is one of the dominant decisions of the DDQN agent,
particularly under highly congested scenarios, as seen later in
Fig. 2 and Fig. 3

The state is defined as a subset of the network KPIs that
are readily available to the network operator in practice. These
KPIs include: Resource Block Utilization (RBU) (B(t)), total
DL throughput of each cell (R, (¢)), number of active users
in each cell (C(t)), Modulation and Coding Scheme (MCS)
Matrix (M(t)). The MCS matrix represents the quality of
the communication channels. The state is the concatenation
of these vectors (after reshaping M (t)):

s =[BOT ROT OB veM®)]. @)

where vec(-) represents matrix vectorization process.

The primary goal of the RL agent is to develop a policy
that maximizes the expected reward over time [11]. This can
be expressed as:

L
max lim E[\'r(t)], 4
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where A\ represents the discount factor that influences the
weight given to future expected rewards. These formulations
provide flexibility in choosing a reward function based on the
operator’s preferences. In this paper, we focus on the following

reward function:
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where 77 and i are hyperparameters representing the penalties
for user coverage and power consumption, respectively. They
are selected to meet the operator’s needs. R(t) represents the
average user throughput at time ¢. This reward function is a
linear combination of three terms. The first term (Y.~_, R(t))
is the total network throughput (to be maximized). The second
term (nR(t) 23:1 1(¢, = 0)) is the sum throughput of the
uncovered users scaled by a hyper-parameter 7. The final
term (p 25:1 my,) represents a penalty as well, reflecting
the number of eNBs with the MIMO feature activated. This
penalty is controlled using a hyper-parameter p. The selection

of hyper-parameters depends on the operator’s preferences.
These preferences are influenced by the service provider’s
strategic goals (e.g., balancing coverage and capacity), channel
conditions, and specific network configuration.

In this work, we show that having two RL agents and
alternating between them: one specialized in a single case,
trained to optimize the network for that specific scenario, and
the second is the conventional agent trained for all other cases,
results in better performance compared to the conventional
agent alone. This approach is beneficial when a single scenario
is observed to dominate the others.

III. PROPOSED ALGORITHM

An overview of the proposed scheme can be seen in Fig. 1.
Decision-making occurs in two stages:

o First Stage: Based on the DDQN approach, the agent
watches the state and decides when to turn MIMO on or
off [19]. The discrete set {0,1} is used to execute the
action (for each eNB).

o Second Stage: Based on the output of the first stage, a
TD3 agent is selected to take the second stage decision.
We augment the first-stage action with the observed state.
The second stage decides the CIO and the variation in
power levels based on the TD3 technique. If all the
eNBs are turning MIMO on, then the dedicated agent
for this case will be selected. The second TD3 agent will
be chosen otherwise. TD3 actions are selected from the
continuous intervals [—6Omin, Omax] and [—Prin, Pmax|
respectively.

The proposed scheme is outlined in Algorithm 1, where s(t)
is the observed state at time ¢, a/(t) is the MIMO enabling
action vector, ac(t) is the CIO values action vector and ap(t)
is the transmitted powers action vector.

Algorithm 1 Proposed RL framework

Determine Reward Function.
Reset all values.
repeat
procedure STAGE ONE
Observe State (s(t)).
Select MIMO feature decision (DDQN) (aas (t)).
Create a new augmented state (Squg(t) = [s(t), anr(t)]).
end procedure
procedure STAGE TWO
Observe state (squg(t)) and select the proper TD3 agent
according to an(t)
Select relative CIO and power level actions from the chosen
(TD3) ([ac (1), ar (1))
Apply augmented action to the network agqug =
lac(t),ap(t),an(t)].
end procedure
Calculate Reward.
Calculate the next state.

After the two stages, the augmented action is given by:
(l(t) :[(9” i #Ja Zv] € {17 7N}7
(P,:me{l,2,--- N},
(mp:ne{l,2,--- ,N})] (6)
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Fig. 1. An overview of the proposed algorithm decision-making process.

a(t) is then applied to the environment.

As the agent explores the whole action space, the scenario-
aware TD3 agent learns to optimize the transmitted power and
CIO values of the eNBs when all eNBs are operating their
MIMO feature (when the first agent decides to turn MIMO
on for all eNBs). The second, traditional TD3 agent learns to
optimize power and CIO values for other combinations of the
first-stage actions (MIMO on/off). The specific scenario agent
is activated only when the scenario, for which it was designed
and trained, occurs; otherwise, the general conventional TD3
agent is used.

IV. PERFORMANCE EVALUATION
A. Network Simulator

The proposed approach involves using RL agents to opti-
mize cellular networks without prior knowledge of the opti-
mal policy, requiring them to learn through interaction. The
approach utilizes the NS3 network simulator and specifically
its LTE module to accurately emulate the LTE system. Mod-
ifications to NS3 allow the agent to control cell CIOs and
choose MIMO modes. The NS3gym interface connects NS3 to
the OpenAl Gym, facilitating RL for network optimization by
handling the exchange of actions, states, and rewards between
the agents and the environment. The implementation of the
RL agents (specifically, the TD3 agents) is done using Python
implementations of the stable-baselines3 library.

B. Simulation Setup:

For the simulation!, we chose a 900mx 1800m area in the
urban Fifth Settlement neighborhood in Egypt. Within this
area, we used a realistic placement of eNodeBs to form a
network cluster of six eNBs, with locations specified by one
of the 4G network operators in Egypt. We have 6 eNBs and
the DDQN agent controls the MIMO feature operation of each
of them. Similar parameters to those used in [6] are used.
The Key Performance Indicator (KPI) we used to monitor

IThe Codes for this work are readily available at the
following Github repository: https://github.com/shoroukraafat/
Load-balancing-in-cellular-networks- with-a-scenario-aware-RL-agent

progress and enhancements in our study is the total downlink
throughput per cell. To simulate realistic user mobility in our
environment, we utilize the Simulation of Urban Mobility
(SUMO) tool [21], which is known for its simplicity and
effectiveness in generating realistic movement patterns. SUMO
can import precisely emulated environments from real-world
maps. We use the SUMO simulator to implement realistic
mobility models for the UEs, which include both vehicles
and pedestrians. Pedestrians move at speeds between 0 — 3
m/s, while vehicle movement parameters such as acceleration,
deceleration, speed factor, and speed deviation are based on
data from [22] to mimic realistic vehicle behavior. UEs are
initially placed randomly on available streets and pedestrian
pathways. During the simulation, each UE takes a random trip
from a starting point to a destination. Users are assumed to
follow a full-buffer traffic model, meaning they are always
active.

We extend the simulated cellular network presented in
[5] and [6]. In addition to the previous work, we introduce
another TD3 agent that is trained on an environment where
all eNodeBs have their MIMO feature always turned on. This
is because some MIMO decision combinations occur more
frequently than others, especially with increased congestion
and mobility in the network. In the case of having a penalty
on user coverage 1 = 2 value, a histogram of the number of
eNBs having MIMO-on feature is shown in Fig. 2. The x-axis
represents the total number of eNBs (out of 6) turning MIMO
on during the simulation time. In the second case, shown in
Fig. 3, there is no penalty in the reward function (¢ = 0 and
n = 0), i.e., the reward function targets maximizing the sum
throughput. In this case, most of the eNBs have MIMO-on
with high frequency, as maximizing the sum throughput favors
switching MIMO on. For this reason, we choose to specialize
a scenario-aware agent to optimize the transmitted power and
CIO values for the eNBs when all eNBs are operating in
MIMO mode.

Based on the previous results, testing the scenario-aware
agent shows a significant increase in the downlink throughput
compared to the TD3 agent trained for all DDQN agent
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Fig. 3. The frequency of MIMO-on state for all eNBs with no penalty for
uncovered users case for n = 0 (number of runs = 15k)

decisions. This occurs when the environment operates with
the MIMO feature turned on for all base stations, which is a
case that occurs more frequently.

C. Results

In this section, we assess the performance of our proposed
approach by testing the effect of different hyperparameters on
the sum throughput of the network. Both TD3 agents (the
conventional TD3 agent from [6] and the scenario-aware TD3
agent) are trained to get the best model. Testing scenarios are
as follows:

1) MIMO always on with penalty on the user coverage:
We employ a RL agent to optimize the CIOs and power
levels only. We switch on the MIMO feature at all times
for all eNBs and use a penalty on uncovered users with
7 = 2 in equation (5). This setup allows us to compare
the performance of both agents in the same environment
when all eNBs are forced to keep MIMO on to observe
the agents’ performance in this specific case. We plot
the network sum throughput (in Mbps) versus steps in
Fig. 4 for a testing episode of 250 steps. Our proposed
algorithm achieves a gain of approximately 4 Mbps over
the conventional agent.

2) MIMO always on with no penalty on the user coverage:
This scenario is similar to the previous one but we set
no penalty on uncovered users with 17 = 0. This is done
to compare the performance of both agents (scenario-
aware and conventional) based solely on pure throughput

values, without the influence of other factors. The gain
of our proposed agent is higher in this case as shown
in Fig. 5 compared to the case simulated in Fig. 4; the
throughput gain is mostly above 7Mbps.

Since better throughput results were obtained under the
case of no coverage penalty, we used the scenario and
models trained in the absence of this penalty in the
reward function, i.e., we set = 0, to simulate the
performance of our proposed agent against the conven-
tional agent in the environment where MIMO switching
decisions are made by the DDQN agent.
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3) MIMO on/off with no penalty on the user coverage: In
this simulation scenario, the DDQN agent first decides
whether to enable the MIMO features of eNBs. If MIMO
is enabled for all eNBs, the scenario-aware TD3 agent
(trained specifically for this all-MIMO-on scenario) de-
cides the continuous actions for CIOs and transmitted
powers. Otherwise, the conventional TD3 agent from
[6] is used to decide on the CIOs and power values.
The results of this case are shown in Fig. 6.



324

W
(=)

N
1]

N
o

o M AN rfd\
A e pw ]
—— Conventional RL agent

Proposed scenario-aware RL agent

Long term average reward conventional agent
Long term average reward proposed agent

Sum throuput per step (Mbps)

N
&

22 T T

100 150 200 250

Steps

Fig. 6. Average throughput per step over 20 episodes while alternating
between conventional and MIMO-on agents for n = 0

Fig. 6 shows the average sum throughput per step, averaged
over 20 episodes, and it reveals that the proposed algorithm,
which introduces a MIMO-ON-only agent that alternates with
the conventional agent, achieves significantly better perfor-
mance than the conventional TD3 agent in the simulated
scenario. The long-term average difference between our pro-
posed algorithm and the conventional one is approximately
3Mbps. This increase in sum throughput comes with system
complexity, presenting a performance-complexity trade-off for
system designers when selecting the network RL agents.

V. CONCLUSION

In this paper, we introduced a scenario-aware TD3 agent
that is trained to make optimal decisions in the case of
all eNBs enabling the MIMO feature. This case is selected
because of its significant occurrence in the environment during
the simulation time. The added agent works along with the
conventional agent to provide better performance when each
is used in the case for which it was trained. This suggestion in-
troduces some intricacy to the design but favors an increase in
total throughput. This trade-off should be assessed by system
designers according to the environment conditions to adopt the
new approach when a case occurs much more frequently than
others. Specializing an agent for this case will result in better
results for the agent’s actions. While the paper demonstrates
the benefits of scenario-specific RL agents, future work should
focus on exploring their complexity-performance trade-off
and scalability across diverse and dynamic cellular network
conditions.
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