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Abstract—The exponential growth of mobile data traffic has
intensified the need for energy-efficient and fair resource allo-
cation in cellular networks. This paper addresses this challenge
through two key contributions: a novel user association (UA) algo-
rithm and a reinforcement learning (RL)-based dynamic power
allocation framework employing Proximal Policy Optimization
(PPO). The proposed UA algorithm dynamically assigns users to
frequency bands to optimize energy efficiency, minimize dropped
users, and enhance fairness. The RL agent dynamically adjusts
power levels across high-frequency bands to further improve
energy efficiency while maintaining Quality of Service (QoS).

The simulation results demonstrate that the RL-based power
allocation provides over a 15% improvement in energy efficiency
compared to fixed full power configurations. Moreover, the pro-
posed UA performs better than the Max-SINR baseline in terms
of energy efficiency, load balancing fairness, and dropped users
metrics. These findings underscore the potential of combining
intelligent UA algorithms with RL-based power control to address
the demands of next-generation cellular networks.

Index Terms—Reinforcement Learning, Cellular Networks,
Machine Learning, Load Balancing,

I. INTRODUCTION

The exponential growth of wireless communication tech-
nologies has transformed modern society, enabling seamless
connectivity and unprecedented access to information. With
the advent of 5G and the anticipated deployment of 6G net-
works, the demand for robust, high-speed, and energy-efficient
cellular networks continues to increase [1]. As mobile data
traffic increases, network operators face increasing pressure
to manage scarce resources effectively while ensuring optimal
user experiences.

Efficient resource management in cellular networks is a
critical challenge that encompasses optimizing network per-
formance, energy consumption, and user Quality of Service
(QoS). Traditionally, network operators have relied on fixed
and heuristic approaches to manage parameters such as user
association, transmit power, and base station activity. However,
these methods struggle to adapt to the dynamic and complex
nature of modern networks.

Recent advances in machine learning (ML) have introduced
a paradigm shift in network optimization [2]. Reinforcement
learning (RL), in particular, has shown promise in addressing
dynamic optimization problems by enabling agents to learn
optimal strategies through interaction with their environments.
RL-based approaches have been applied to various aspects
of cellular network optimization, such as power control, user
association, and energy efficiency [3]. Despite this progress,
significant challenges remain.

One of the underexplored areas in cellular networks is traffic
steering in homogeneous networks where base stations operate

across multiple frequency bands. Current research primarily
focuses on single-frequency band scenarios, overlooking the
unique opportunities and challenges presented by multi-band
operation. Recent efforts, such as [4], have explored multi-
objective RL for load balancing; however, their approach
does not explicitly address energy efficiency, which remains a
critical challenge.

Our main contributions can be summarized as follows:
• We propose a novel user association (UA) algorithm that

dynamically assigns users to frequency bands based on
SINR metrics while prioritizing energy efficiency, load-
balancing fairness, and minimizing dropped users.

• We develop a reinforcement learning (RL)-based power
allocation framework using Proximal Policy Optimiza-
tion (PPO) to dynamically adjust power levels in high-
frequency bands, significantly improving energy effi-
ciency.

The rest of the paper is organized as follows: Section II
reviews the relevant literature on user association and RL-
based power allocation in cellular networks. Section III out-
lines the system model and formulates the resource allocation
problem. Section IV describes the proposed UA algorithm and
RL-based power allocation framework in detail. Section V
presents the simulation setup and evaluates the performance
of the proposed methods. Finally, Section VI concludes the
paper and outlines directions for future work.

II. LITERATURE REVIEW

Various analytical approaches have been proposed to im-
prove energy efficiency and load balancing in cellular net-
works. Early research efforts focused on developing tradi-
tional optimization techniques to improve energy efficiency;
for instance, the authors in [5] discussed the integration
of millimeter wave (mmWave) technologies in ultra-dense
networks (UDNs), highlighting the benefits of joint user as-
sociation and power allocation. By employing mixed-integer
programming and Lagrangian dual decomposition, the authors
achieved significant improvements in energy efficiency and
spectral efficiency. Meanwhile, in [6] the authors proposed
long-term rate-based association strategies for load balancing
in heterogeneous cellular networks (HCNs). The introduction
of power control further reduced energy consumption by
mitigating network interference.

Similarly, [7] introduced an alternating optimization algo-
rithm to enhance utility-energy efficiency in heterogeneous
networks (HetNets). The algorithm leveraged Lagrangian dual



analysis and auxiliary variables to transform the original non-
convex problem into a convex one, ensuring efficient solutions
and convergence to a local optimum. In [8] a three-layer iter-
ative algorithm was developed for ultra-dense heterogeneous
networks (UDHNs). The algorithm combined base station (BS)
on/off operations with user association to maximize long-
term rates, demonstrating better performance than existing user
association methods. However, such centralized approaches
are often computationally intensive and require high signaling
overhead, limiting their scalability in dense networks.

The advent of distributed learning methods has further
advanced energy efficiency in cellular networks. The authors
in [9] explored a distributed user association algorithm in
HetNets, aiming to maximize network-wide energy efficiency.
By turning off BSs with low user counts and offloading
users to active BSs, the proposed method minimized energy
consumption and maximized throughput, outperforming con-
ventional load balancing strategies. A belief propagation-based
message-passing approach for user association in HetNets was
introduced in [10]. This method improved energy efficiency
without sacrificing spectral efficiency, offering higher energy
efficiency geometric mean compared to prior art.

The latest advancements in machine learning and deep
learning have opened new avenues for enhancing energy
efficiency. A joint cell activation and user association scheme
using a Q-learning-based algorithm was introduced in [11] to
address power consumption and backhaul load balancing in
green dense heterogeneous networks. This approach showed
substantial improvements in fairness, quality of service (QoS),
and energy efficiency. The authors in [12] presented a mul-
tiagent Q-learning algorithm for user association and power
allocation in UDHNs, focusing on load balancing and energy
efficiency. Simulation results confirmed the convergence and
effectiveness of the proposed scheme. The authors in [13]
proposed a deep neural network (DNN)-based scheme for
dynamic cell selection and power allocation in coordinated
multi-point (CoMP) transmissions. The DNNs were trained
to maximize spectral and energy efficiency, achieving similar
performance to optimal algorithms with lower complexity.
In [14], a decentralized user association technique based on
multi-agent actor-critic (AC) networks was introduced for
ultra-dense networks (UDNs). This approach utilized local
observations and critic networks to inform energy-efficient
decisions, resulting in a 50% average energy efficiency gain
over conventional techniques. The authors in [15] proposed a
multi-agent deep reinforcement learning (MA-DRL) scheme
for channel assignment and power allocation in two-tier Het-
Nets. The deep Q network (DQN) and deep deterministic
policy gradient (DDPG) network worked together to optimize
system capacity and reduce power consumption effectively.

Lastly, a recent work explored load balancing in homoge-
neous multi-band networks using a multi-objective reinforce-
ment learning (MORL) framework [4]. Their approach inte-
grates meta-reinforcement learning (meta-RL) to adapt to vary-
ing trade-offs between network KPIs. Specifically, they aim to
maximize the minimum user throughput while minimizing its
standard deviation, ensuring a more balanced distribution of
network resources. Their control variables include handover

Fig. 1: System Model

(HO) and cell reselection (CRS) thresholds, which are adjusted
dynamically to optimize load balancing. Additionally, they
propose an extension to gradient-based meta-RL methods by
incorporating policy distillation to enhance the meta-policy’s
performance. While this work demonstrates the potential of
MORL for load balancing in multi-band networks, it primarily
focuses on throughput fairness and does not explicitly address
energy efficiency. In contrast, my research aims to enhance
energy efficiency in multi-frequency band networks. By using
reinforcement learning (RL), base stations dynamically switch
higher frequency bands on or off to conserve energy and
steer users to appropriate bands based on their volume and
service requirements. Furthermore, my approach introduces
a novel SINR-based user association metric that simplifies
decision-making while maintaining load balancing and QoS.
By combining RL-based power allocation with efficient user
association, this work offers a complementary perspective to
existing multi-band network optimization strategies, with a
primary focus on energy-efficient load balancing

III. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the downlink transmission of a homogeneous
cellular network consisting of a set of base stations N =
{1, 2, ..., N} and a set of mobile users U = {1, 2, ..., U}. Each
base station n ∈ N operates on two distinct frequency bands:
a low-frequency band ln, characterized by robust coverage
and high penetration, and a high-frequency band hn, which
offers higher capacity but limited coverage. Moreover, let
the sets B1, B2, and B be defined as B1 = {ln, n ∈ N},
B2 = {hn, n ∈ N}, and B = B1 ∪ B2. Moreover, all
base stations are assumed to be connected to a centralized
controller, which facilitates coordination and decision-making
for resource allocation and user association. Figure 1 provides
an illustrative example of the system model.

Each user u ∈ U is associated with a single base station
n ∈ N and is assigned resources on either ln or hn based



on the user association policy. Let xbu be a binary indicator
variable such that xbu = 1 if user u ∈ U is associated with
band b ∈ B; and 0 otherwise. Note that by the definitions of
B and N , any band b ∈ B uniquely determines a base station
n ∈ N .

The signal to interference and noise ratio (SINR) at user u
when it is served by band b ∈ Bi is given by

γbu =
PbHbu

Σb′∈Bi\b Pb′Hb′u + σ2
, i ∈ {1, 2} (1)

where Pb and Hbu represent the transmit power of band b and
the channel gain between band b and user u, respectively, and
σ2 is the noise power.

Let the load of each band b be defined as yb =
∑

u∈U xbu,
thus the transmit power Pb of band b is set to zero whenever
yb = 0, ensuring that unused bands do not consume energy. We
assume that the bandwidth of each band b ∈ B, denoted Wb, is
shared equally among all users connected to it. Consequently,
the data rate of user u when connected to band b is given
by Rbu = Wb

yb
log2(1 + γbu), and the overall system data rate

is given by Rtotal =
∑

b∈B
∑

u∈U xbuRbu. In this system, the
transmit powers for the low-frequency bands b ∈ B1 are fixed
to ensure robust coverage. In contrast, the transmit powers
for the high-frequency bands b ∈ B2 can take values in the
discrete set Pb, enabling adaptive power control.

The total power consumption of the system is given by
Ptotal =

∑
b∈B Pb. The energy efficiency (EE) of the system,

defined as the ratio of the total data rate to the total power
consumption, is expressed as EE = Rtotal

Ptotal
. Our objective is to

maximize the system’s energy efficiency by jointly optimizing
the user association variables {xbu} and the transmit powers
of the high-frequency bands {Pb : b ∈ B2}. The optimization
problem can be formulated as:

max
{xbu},{Pb:b∈B2}

EE =

∑
b∈B

∑
u∈U xbuRbu∑
b∈B Pb

, (2a)

subject to:
∑
b∈B

xbu ≤ 1, ∀u ∈ U , (2b)

Pb ∈ Pb, ∀b ∈ B2, (2c)∑
b∈B

xbuRbu > Ru
min, ∀u ∈ U , (2d)

xbu ∈ {0, 1}, ∀b ∈ B,∀u ∈ U (2e)

where (2b) ensures that each user u is associated with at
most one band b across all base stations, (2c) restricts the
power levels of the high-frequency bands to a discrete set of
values, including the option to turn off the band (Pb = 0), and
(2d) guarantees that each user u receives a minimum required
data rate Ru

min, ensuring quality of service. The formulated
problem is a Mixed-Integer Nonlinear Programming (MINLP)
problem, which is known to be NP-hard and computationally
challenging to solve directly for practical network sizes. To
address this complexity, we decompose the problem into
two subproblems: user association and power allocation. This
decomposition allows for a tractable and efficient solution to
the overall problem, as detailed in the following section.

IV. PROPOSED SOLUTION

To address the complexity of the formulated MINLP prob-
lem, we decompose it into two subproblems: user association
(UA) and power allocation (PA). In this section, we detail
the two user association algorithms considered in this work:
the newly proposed algorithm and a baseline algorithm based
on maximum SINR. The power allocation subproblem will be
addressed in subsequent sections using reinforcement learning.

A. Proposed User Association Algorithm

The proposed user association algorithm is designed to
optimize system performance by prioritizing users based on
their SINR ratios and ensuring that constraints are respected
during the assignment process. The key steps of the algorithm
are as follows:

• Compute the metric for each user as the ratio of the two
highest SINRs they experience.

• Order users in descending order of their metrics, prioritiz-
ing those with a higher disparity in SINR. This prioritiza-
tion ensures that users with the highest ratio, indicating
a significant performance difference between their best
and second-best SINR, are assigned to their optimal base
station first. By doing so, the algorithm minimizes the
likelihood of severe performance degradation for these
users if they are forced to connect to a suboptimal band.

• Assign each user to the band providing the highest SINR,
provided it does not violate any constraints. If a violation
occurs, the band is closed to new assignments.

• Repeat the process for remaining users and open bands
until all users are assigned or all bands are closed.

The pseudocode for the proposed algorithm is given in
Algorithm 1.

B. Baseline User Association Algorithm (Max SINR)

The baseline algorithm, referred to as Max SINR, serves as a
comparative approach to the proposed method. This algorithm
assigns each user to the band providing the highest SINR,
resolving violations iteratively. The main steps are:

• Assign each user to the band with the highest SINR.
• Remove users from bands where rate constraints are

violated and reassign them to the next highest SINR band,
excluding previously banned bands.

• Repeat until all users are either assigned or banned from
all bands.

Algorithm 2 represents the pseudocode for the baseline
algorithm.

C. Reinforcement Learning for Power Allocation

To address the power allocation subproblem, we employ
Proximal Policy Optimization (PPO), a state-of-the-art rein-
forcement learning (RL) algorithm well-suited for continuous
or discrete action spaces [16]. PPO is known for its sample
efficiency and stability, achieved by restricting policy updates
to a small region via a clipped objective function. The RL
framework for power allocation in this work is designed with
the following components:



Algorithm 1: Proposed User Association Algorithm
Input: SINR values γbu for all u ∈ U and b ∈ B.
Output: User association {xbu}.

1 Initialize xbu ← 0 for all b ∈ B and u ∈ U .
2 Set Uunassigned ← U and Bopen ← B.
3 while Uunassigned ̸= ∅ and Bopen ̸= ∅ do
4 foreach u ∈ Uunassigned do
5 Compute the two highest SINRs in Bopen: γb1u

and γb2u.
6 Compute the metric Mu =

γb1u

γb2u
.

7 end
8 Order users in Uunassigned in descending order of

Mu.
9 foreach user u in the ordered list do

10 if assigning u to b1 does not violate the rate
constraints of users connected to b1 then

11 Assign u to b1: xb1u ← 1.
12 Remove u from Uunassigned.
13 else
14 Remove b1 from Bopen (close the band).
15 end
16 end
17 end
18 return {xbu}.

Algorithm 2: Baseline User Association Algorithm:
Max SINR

Input: SINR values γbu for all u ∈ U and b ∈ B
Output: User association {xbu}

1 Initialize xbu ← 0 for all b ∈ B and u ∈ U Initialize
Uunassigned ← U , Bu ← B for all u ∈ U

2 while Uunassigned ̸= ∅ and Bu ̸= ∅ for all u ∈ Uunassigned

do
3 foreach u ∈ Uunassigned do
4 Assign u to band b⋆u = argmaxb∈Bu

γbu:
xb⋆uu

← 1
5 end
6 Identify users violating rate constraints: Uviolating

foreach u ∈ Uviolating do
7 xb⋆uu

← 0
8 Remove b⋆u from Bu
9 end

10 Uunassigned ← Uviolating
11 end
12 return {xbu}

a) States: For each frequency band b ∈ B, define the per-
centage of “good users” as: gb =

∑
u∈U 1(RSRPbu>RSRPthreshold)

U ,
i.e., those users whose Reference Signal Received Power
(RSRP) is more than a predetermined threshold. Using this
definition, the state vector s at each decision step is expressed
as:

s = [U, gb1 , gb2 , . . . , gb2N ] , (3)

b) Actions: The actions are defined as the power alloca-
tion across all high-frequency bands in the network. Specifi-
cally, the state vector a at each decision step can be expressed
as:

a = [Pb|Pb ∈ Pb, b ∈ B2] , (4)

At each step, the agent selects one power level for each
high-frequency band from the set of predefined power levels.
This decision impacts the signal strength and coverage area
of the corresponding bands, influencing the overall network
performance in terms of energy efficiency, quality of service,
and fairness in load balancing.

c) Reward: The reward function is designed to balance
energy efficiency, user satisfaction, and fairness in load distri-
bution among the bands. At each step, the reward is computed
as:

r = ÊE−D + αJ, (5)

where ÊE is the normalized energy efficiency defined as

ÊE =
EE− EEmin

EEmax − EEmin
, (6)

where EEmin,EEmax are the minimum and maximum energy
efficiency for a given fixed sum rate R, respectively; i.e.,
EEmin = R

Σb∈B1Pb
+Σb∈B2Pmax

b

, and EEmax = R
Σb∈B1Pb

. The
variable D represents the percentage of users who cannot be
connected to any band without violating the rate constraints
of already connected users., i.e.,

D =
Σu∈U1(

∑
b∈B xbu = 0)

U
, (7)

and J is Jain’s Fairness Index [17], which is a metric quanti-
fying the fairness of resource allocation across bands, defined
as:

J =

(∑
b∈B yb

)2
|B| ·

∑
b∈B y2b

(8)

where yb is the load of band b. Finally, α is a tunable scalar
that governs the emphasis placed on load balancing in the
reward function.

V. SIMULATION RESULTS AND ANALYSIS

The simulation environment was implemented using the
QuaDRiGa (QUAsi Deterministic RadIo channel GenerAtor)
tool in MATLAB. QuaDRiGa is a comprehensive channel
modeling framework widely employed to simulate realistic
radio propagation environments [18]. The simulated network
consists of three base stations deployed in a 1 km×1 km area,
forming an equilateral triangle centered around the origin with
an inter-site distance (ISD) of 500 m. The mobile users are ran-
domly distributed to emulate realistic traffic conditions. Each
base station operates on two distinct frequency bands: a low-
frequency band (800 MHz) and a high-frequency band (2.6
GHz). All base stations and mobile users are equipped with
omni-directional antennas. Both low frequency bands and high
frequency bands are modeled using the 3GPP_3D_UMa_LOS
scenario.

Additional simulation parameters are as follows:



• Low-frequency bands operate with a bandwidth of 5
MHz, while high-frequency bands use a bandwidth of
10 MHz.

• The Reference Signal Received Power threshold value,
RSRPthreshold, is set to 10−8 mW (−80 dBm).

• Ru
min = 0.1 Mbps for all u ∈ U .

• The power levels for high-frequency bands (b ∈ B2) are
the same for all bands and consist of 10 discrete levels:
Pb = {0, 20, 22.5, . . . , 37.5, 40}W. These power levels
increase in steps of 2.5 W, starting from 20 W and ending
at 40 W, with an additional zero-power (OFF) state.

• Fairness Weight (α): Set to 2.1 to strike a balance be-
tween load balancing and the other performance metrics.
This value was selected through parameter tuning to avoid
overemphasis on any single objective.

• The training parameters for the PPO-based reinforcement
learning algorithm are detailed in Table I.

Parameter Value Parameter Value
Number of Episodes 600 Clip Factor 0.2
Steps per Episode 100 Mini Batch Size 25
Experience Horizon 50 Advantage Estimate

Method
GAE

Number of Epochs 3 GAE Factor 0.95
Entropy Loss Weight 0.1 Discount Factor 0.995

TABLE I: PPO Training Parameters

To evaluate the performance of the proposed User Asso-
ciation (UA) algorithm, it is compared with the Max-SINR
algorithm under two power allocation strategies: reinforcement
learning (RL)-based dynamic power allocation and fixed full
power. The four configurations analyzed are:

1) Proposed + RL: The PPO agent is trained with the
proposed UA algorithm.

2) Max-SINR + RL: The PPO agent is trained with the
Max-SINR UA algorithm.

3) Proposed + Full Power: Fixed power configuration with
the proposed UA.

4) Max-SINR + Full Power: Fixed power configuration
with the Max-SINR algorithm.

For fixed power configurations, we have Pb = 20W, b ∈ B1
and Pb = 40W, b ∈ B2.

The four configurations are evaluated according to three
performance criteria: energy efficiency, as shown in Figure
2, percentage of dropped users, as shown in Figure 3, and the
Jain’s Fairness Index, as shown in Figure 4. All simulation
results are averaged over 100 independent trials.

A. Comparison Between Proposed and Max-SINR UA Algo-
rithms

The results demonstrate the superior performance of the
proposed UA algorithm compared to Max-SINR in terms
of energy efficiency (EE), percentage of dropped users, and
fairness index:

• Energy Efficiency (EE): The proposed UA achieves an
average improvement of 4.3% over Max-SINR in the
fixed full power case and 5.3% in the RL-based dynamic
power allocation case.
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Fig. 2: Energy Efficiency Comparison
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• Dropped Users: The proposed UA maintains a slightly
better (lower) percentage of dropped users in both power
allocation strategies.

• Load Balancing Fairness: The proposed UA exhibits a
marginally better fairness index than Max-SINR in both
cases for almost all user densities, indicating a more
balanced load distribution between base stations.

B. Effect of RL-Based Power Allocation
The impact of RL-based dynamic power allocation is evi-

dent in the significant improvements in energy efficiency and
its effect on other performance metrics:

• Energy Efficiency (EE): RL provides more than a 15%
improvement on average in energy efficiency compared
to the corresponding fixed full power configurations,
irrespective of the UA algorithm used (Proposed vs.
Proposed and Max-SINR vs. Max-SINR).

• Dropped Users: RL has a negligible impact on the
percentage of dropped users. For Max-SINR, the dropped
users metric remains nearly identical between RL and
full power configurations. For the proposed UA, there
is a slight (negligible) increase in the dropped users
percentage when RL is applied.

• Load Balancing Fairness: RL does not significantly af-
fect the fairness index in either UA algorithm, indicating
that load balancing fairness is primarily determined by the
user association strategy rather than the power allocation
approach.

These results validate the effectiveness of the proposed UA
algorithm, both independently and when combined with RL,
in achieving a balanced trade-off between energy efficiency,
load-balancing fairness, and connectivity reliability.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a novel approach to optimizing resource
allocation in multi-band cellular networks by combining a
novel user association (UA) algorithm with reinforcement
learning (RL)-based power allocation using Proximal Policy
Optimization (PPO). The proposed UA algorithm improves
energy efficiency, minimizes dropped users, and enhances
load-balancing fairness by dynamically prioritizing user as-
signments while respecting network constraints. Additionally,
the PPO-based RL agent adjusts power levels across high-
frequency bands to further maximize energy efficiency without
compromising Quality of Service (QoS). Simulation results
show that the proposed UA consistently outperforms the
Max-SINR baseline across energy efficiency, load balancing
fairness, and dropped user metrics. Furthermore, the RL-based
dynamic power allocation shows significant improvements
in energy efficiency, exceeding 15% compared to fixed full
power configurations, demonstrating the value of learning-
based power control strategies.

Future work will explore enhancements to the proposed
framework by incorporating user mobility, heterogeneous rate
demands, and a decentralized approach to decision making.
These extensions aim to improve the scalability and applica-
bility of the proposed methods in real-world scenarios while
addressing challenges such as signaling overhead and network
latency.
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