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ABSTRACT

Technology scaling has increased the complexity of integrated cir-
cuit design. It has also led to more challenges in the field of Design
for Manufacturing (DFM). One of these challenges is lithography
hotspot detection. Hotspots (HS) are design patterns that negatively
affect the output yield. Identifying these patterns early in the design
phase is crucial for high yield fabrication. Machine Learning-based
(ML) hotspot detection techniques are promising since they have
shown superior results to other methods such as pattern matching.
Training ML models is a challenging task due three main reasons.
First, industrial training designs contain millions of unique patterns.
It is impractical to train models using this large number of patterns
due to limited computational and memory resources. Second, the
HS detection problem has an imbalanced nature; datasets typically
have a limited number of HS and a large number of non-hotspots.
Lastly, hotspot and non-hotspot patterns can have very similar
geometries causing models to be susceptible to high false positive
rates. Due to these reasons, the use of data sampling techniques
is needed to choose the best representative dataset for training. In
this paper, a dataset sampling technique based on autoencoders
is introduced. The autoencoders are used to identify latent data
features that can reconstruct the input patterns. These features are
used to group the patterns using Density-based spatial clustering of
applications with noise (DBSCAN). Then, the clustered patterns are
sampled to reduce the training set size. Experiments on the ICCAD-
2019 dataset show that the proposed data sampling approach can
reduce the dataset size while maintaining the levels of recall and
precision that were obtained using the full dataset.
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1 INTRODUCTION

The continuous reduction in semiconductor device size has lead to
a vast improvement in the functionality and performance of inte-
grated circuits (ICs). However, it has also caused more challenges
in the manufacturing process. Specifically, in the lithography step,
yield can be affected by certain patterns that are sensitive to process
variations. These patterns are commonly known as hotspots (HS).
An example is illustrated in Figure 1 where the manufactured metal
tracks have deviated from the drawn ones causing a short circuit
to occur.

HS patterns must be detected early in the design stage to ensure
that the IC can be fabricated with high yield. However, this process
is computationally expensive since it requires lithography simula-
tion using rigorous process models, which needs many hours of
high-powered computational resources. As the complexity of inte-
grated circuits continues increasing, it is becoming a real challenge
to run simulation on a full chip. Therefore, new approaches other
than full simulations were introduced in the literature to address
this challenge. One of the recent promising methods in hotspot
detection is the use of machine learning techniques to tackle the
problem in an approximate, yet more efficient manner. These tech-
niques rely on training a machine learning model using a set of
known hotspots (HS) and non-hotspots (NHS) on existing designs.
The trained model can then be used to detect hotspots on new
designs, so that they can be rectified before fabrication.

The process of HS detection using machine learning techniques
can be divided into three steps: data generation, model training,
and prediction. In the first step, patterns are captured from the
input layout and encoded into a set of features that can be used for
training. Each feature vector is then labeled as either corresponding
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Figure 1: Example of a Hotspot Pattern

to a hotspot (HS) or a non-hotspot (NHS). In the training step,
the model iteratively minimizes a pre-defined loss function that
measures the deviation from the model predictions during training
from the actual labels. The learned model (achieving the minimal
loss), is then used to predict patterns on the test layouts to determine
whether they correspond to a hotspot or not.

There are three main challenges in the data generation step. The
first challenge is that industrial training layouts typically contain
millions of unique patterns [10]. It is difficult to use this amount of
data to train a ML model due to computational and memory limita-
tions. For example, using the ICCAD-2019 dataset [15] which has
around 15k patterns, it would take a few minutes to train a convolu-
tional neural network such as Mobilenet [9]. However, an industrial
dataset such as the one in [10] having 20M unique patterns would
require several days for training to finish. Hence, data selection is
needed to reduce the training set size. The second challenge is the
imbalanced nature of the problem; in a typical design, the ratio of
hotspots to non-hotspots is very small, which causes a class skew
in the generated datasets for training. Machine learning models are
sensitive to imbalance in class distribution, which necessitates the
employment of a sampling technique to choose a representative
dataset for training that is more balanced. The third challenge is the
existence of numerous non-hotspot patterns that are structurally
and geometrically similar to hotspot patterns, which makes them
harder to predict by the machine learning model, and usually get
classified as HS. These patterns are described as hard-to-classify
(HTC) [15] and can lead to an increase in the false positive rate of
the model.

While basic random sampling can be used for data reduction,
it can cause many patterns such as the HTC patterns to be lost.
Moreover, random sampling does not consider the data imbalance
issue that is present in lithography hotspot datasets. Hence, a more
sophisticated sampling method is needed to preserve the statisti-
cal properties in the original dataset. This method should be able
to address the data imbalance issue and ensure that the sampled
dataset contains the HTC patterns to help the model learn the subtle
differences between HS and NHS.

Various ML methods for HS detection are discussed in the litera-
ture. These methods vary from pattern-matching based methods to
deep learning methods [1, 11, 14, 17-19]. In addition, the problem
of pattern selection has been explored in multiple contexts. In the
context of HS detection, Gao et al. have used hierarchical clustering
reduce the size of the dataset that is then used to train an SVM
classifier [5]. In the context of lithography process modelling, Cho
et al. [2] have used image parameters from lithography simulation
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Figure 2: ML Hotspot Detection System

and the DBSCAN algorithm [3] to cluster the patterns and choose
a representative set. Moreover, Gai et al. have used hierarchical
clustering to reduce the number of patterns needed to calibrate
process models [4].

In this paper, we explore the pattern selection problem in the
context of HS detection. We propose a new sampling approach that
is based on training an autoencoder [7] to project the input training
patterns into a lower dimensional space, preserving the patterns’
geometrical structure. The autoencoder would learn the latent fea-
tures that describe the patterns, thus, eliminating the traditional
feature engineering step that is done before clustering. The encoded
features are then used to cluster the training patterns in the lower
dimension space, and finally, for each cluster, a sampling technique
is used to select the representative samples to be included in the
training dataset. The previously mentioned sampling methods have
usually resorted to using the median as the cluster representative.
In our proposed method, we describe a more involved selection
technique that improves cluster coverage by making sure that HTC
patterns are sampled.

The rest of the paper is organized as follows: In Section 2, the
problem statement and dataset description are discussed. In Section
3, the proposed sampling method is explained in detail. The follow-
ing section describes the experiments that were done to evaluate
the proposed approach. The last section summarizes the outcomes
and presents our recommendations and conclusions.

2 PROBLEM STATEMENT AND DATASET
DESCRIPTION

Our problem can be stated as follows: Given a particular training
dataset, find the most representative patterns that can reduce the
dataset size while maintaining the performance metrics of the ML
model that are obtained using the full dataset.

As mentioned in the introduction, the steps for using any ma-
chine learning system can be summarized in Figure 2. The inputs to
the system are n — by — n grey-scale images of the layout patterns.
These images are used to train any machine learning model of
choice. Then, in the prediction step, pattern images are generated
from the test layout and then input to the trained model, which
outputs a probability for each input pattern to be HS or not. The
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Table 1: ICCAD-2019 Benchmark Statistics with HS Augmen-
tation

Number of HS | Number of NHS
Training Dataset | 1868 (467 * 4) 15276
Test Set I 1001 14621
Test Set 11 64310 65523

metrics that are used to evaluate the model are recall, precision,
and F1 Score.

The dataset that will be used in our experiments is the ICCAD-
2019 dataset [15], which was introduced to tackle the shortcomings
of the earlier ICCAD-2012 dataset. The ICCAD-2012 dataset was
shown to have some underlying structural issues that led to inac-
curacies in reporting the machine learning models’ performance.
These issues where addressed and corrected in the ICCAD-2019
dataset, showing that the false positive rates for many of the ma-
chine learning models presented in the literature were higher than
what they were believed to be. Thus, we resorted to using the
ICCAD-2019 dataset as the most accurate benchmark for evaluat-
ing ML models. Table 1 presents a brief description of the ICCAD
2019 dataset. One thing to note is that data augmentation was used
for generating the training HS patterns. This augmentation was
performed by generating 3 different orientations in addition to the
original one: reflection along x and y axes, and 180 degrees rotation.
Hence, the number of HS would thus be four times the one reported
in the original dataset.

3 PROPOSED DATA SAMPLING METHOD

Our proposed approach for sampling the training data is divided
into three steps. The first step is a dimensionality reduction step
which is performed using an autoencoder. The autoencoder learns
the key features that would enable it to reconstruct the input pat-
terns, and is then used to encode all input patterns. In the second
step, DBSCAN is used to group the patterns into clusters that share
similar features[3]. Finally, the clustered patterns are then sampled
to achieve the required data reduction, while ensuring the coverage
of the subtle differences needed to correctly predict the hard-to-
classify patterns. In the following subsections, each step would be
explained in more detail.

3.1 Feature Reduction using Autoencoder

As described in Section 2, the input patterns to our ML system are
n — by — n greyscale images (n? pixels). Due to the high dimen-
sionality of pixel-based feature vectors, it is difficult to obtain a
meaningful clustering. Thus, dimensionality reduction is needed
to obtain meaningful feature vector that can be used for clustering
and then sampling the data.

The first step in the proposed flow is to perform dimensionality
reduction using an autoencoder. An autoencoder can be trained
to reconstruct the input images using a lower dimension feature
vector. It learns different relations between the data points and can
encode the high dimensional data into a lower dimensional space
without a significant loss of information.

To select the size of the encoded features, multiple autoencoders
with decreasing encoded feature size are trained. Based on the
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reconstruction loss values, the encoded feature size d,p,codeq can be
selected to minimize the error. Each pattern in the training dataset is
then converted to the encoded representation. The dimensionality
of each data point is thus reduced from n? to dg;,cogeq- The encoded
dataset can then be used in the next step of the flow which is
clustering of the patterns using the DBSCAN algorithm [3].

3.2 DBSCAN Clustering

To reduce the size of the dataset, clustering of the patterns is done
using the encoded features. The DBSCAN algorithm is used [3]. It
has been selected because it can find non-linearly separable clusters
and the number of clusters does not need to be specified as an input.
DBSCAN has two parameters: radius of neighborhood around a
point (¢) and the minimum number of points required to form a
dense region (minPts). In the following experiments, minPts will
always be equal to one. This means that any point that does not
have neighbors will be assigned a cluster on its own. This is done to
simplify the flow where only a single parameter is varied. Clusters
which have single points will then be handled in the sampling step
of the flow. They can either be included in the sampled data or
discarded based on the user’s preference. The distance measure
used is the Euclidean Distance defined over the autoencoder feature
space.

Due to the binary nature of the HS detection dataset, there exists
three different types of clusters:

o Clusters containing HS only (pure cluster)
o Clusters containing NHS only (pure cluster)
o Clusters containing both HS and NHS (hybrid cluster)

Each type of cluster will be handled in a different way when per-
forming the sampling step. This will be discussed in the next sub-
section.

3.3 Sampling from Clustered Data

After clustering is done at a certain value for €, sampling of the data
is performed. For this purpose, another parameter is introduced to
the flow which is called the sampling percentage per cluster (P).
This allows the user to control how much data is sampled from
each cluster. The goal of the sampling step is to select patterns that
maximize the cluster coverage. The proposed sampling technique
starts by obtaining the median point of the cluster. Next, the furthest
point from the median is obtained. Then, the furthest point from
the previous two points is obtained. This is done by summing the
distances to all points from these two points and then getting the
point which has the largest distance. This process is repeated until
the required number of points is obtained. This gives good cluster
coverage because the sample contains a pattern from the center of
the cluster (median) and then several patterns at the boundary of
the cluster. This method can be used for pure clusters. For hybrid
clusters, the algorithm is slightly modified to ensure that HTC
patterns are included in the output sample. For each point sampled,
the closest pattern with the opposite label is obtained. This enhances
the sampling by including HS and NHS that are close to each other
to allow the model to differentiate between them.

Figure 3 shows an illustration of the algorithm using 2D points.
The sampling method for pure clusters is explained in Algorithm 1
while the one for hybrid clusters is explained in Algorithm 2.
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Figure 3: 2D Illustration of the Sampling Algorithm. (a): Median Selection (b), (c): Selection of Next Furthest Point.

Algorithm 1 Sampling Pure Clusters

Input: (Required Number of Samples)
Output: (List of Patterns)
- Get the Median Pattern of the Cluster
- Add Median to Output
while there are still unprocessed patterns and the required num-
ber of samples is not obtained do
- Get the furthest pattern relative to the currently selected
set of patterns so far
- Add Pattern to Output
end while

Algorithm 2 Sampling Hybrid Clusters

Input: (Cluster Size (n), Sampling Percentage (P), HS/NHS ratio
in the Training Dataset (hs_nhs_ratio), #HS (input_hs_count),
#NHS (input_nhs_count))

Output: (List of Patterns)

- Calculate the total number of sampled patterns (total_count) =
Pxn
- Calculate the of HS (out_hs_count)
min(hs_nhs_ratio X total_count, input_hs_count)
- Calculate the number of NHS (out_nhs_count)
min(total_count — out_hs_count, input_nhs_count)
- Get the Median Pattern of the Cluster
- Add Median to Output
- Get the furthest pattern relative to the Median
- Add Pattern to Output
while there are still unprocessed patterns and the required num-
ber of samples is not obtained do

- Get the furthest pattern relative to the currently selected
set of patterns so far

- Get the closest pattern with the opposite label

if out_hs_count is not exceeded then

- Add HS pattern to Output

end if

- Add NHS pattern to Output
end while

number

4 EXPERIMENTS AND RESULTS

The experimental procedure will be outlined in this section. The
size of the input images for our experiments is 60x60 pixels (3600

features). The first step in the flow is performing feature reduction
using an autoencoder. An autoencoder with a single hidden layer
is used. The activation function is the rectified linear unit (relu) [6]
and the cost function is binary cross-entropy. To find the size of the
encoded features, several autoencoders with varying hidden layer
sizes are trained using the full ICCAD-2019 dataset. The size of the
hidden layer starts at 3600 and is reduced by half on each iteration.
A graph of loss against the hidden layer size is then plotted. Figure
4 shows that the loss begins to increase starting around 225 features.
Based on this plot and examining the reconstructed images, it was
decided to use a feature size of 150 to encode the input patterns.
The full dataset is then encoded using this autoencoder. The input
feature size is 3600 and the encoded size is 150 which results in 24x
reduction in feature size.

Using the encoded dataset, DBSCAN clustering and sampling
are then performed. Different reduced datasets are generated by
varying the values for € and P. For each reduced dataset, a ML
model is trained and the best model for each experiment is chosen
based on the highest validation F1 score. The model used for the
experiments is the Mobilenet CNN model which is known for its
efficiency in Mobile Vision applications [8]. In addition, it has been
recently used for HS detection on the ICCAD-2012 dataset and has
shown good results [9]. The loss function used for training is the
Focal Loss which is suited for problems with data imbalance [13].
The optimizer used during training is the Adam Optimizer [12].
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The training data is split into two parts: 90% for training and 10%
for validation. The trained model is then used to run prediction on
the ICCAD 2019 Test Sets I and II.

Since the objective is to perform dataset reduction without sac-
rificing the model performance metrics, the clustering method will
be compared to the trivial random sampling method. This will be
done by generating reduced datasets using random sampling and
then training the same ML model. Then, the model’s metrics will
be compared against the one that was trained using the clustered
data. The metrics used for comparison are HS recall, precision and
F1 score. Each random sampling experiment is repeated 50 times
and the average statistics are obtained.

Table 2 shows how the size of the reduced data as a percentage
of the full dataset size varies with € and P. For example, at (e =
35 and P = 20), 54.5% of the full dataset is used for training. From
the table, it can also be seen that the size of the sampled dataset
decreases as € increases and P decreases. Moreover, as € approaches
infinity, all the patterns are assigned to the same cluster. Hence, at
large values of €, the size of the dataset approaches the value of
sampling percentage. This is observed at € = 50 where the dataset
size is very close to the value of P.

An important point to note is that at small values of €, most
of the clusters will contain a single pattern. In that case, it was
decided to include the pattern in the output sample. Hence, at small
values of € (10-15), the achieved data reduction will be small. Higher
reduction can be observed as € increases.

To compare the proposed sampling method against random sam-
pling, Test Set I is examined first. The difference in F1 score between
the models trained with clustered data and the ones trained with
random data is shown in Table 3. The table indicates an increase
in F1 score relative to the random sampling method. The model

Table 2: Dataset Size (%) as a Function of € and P

e/p | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90%
10 | 93.2 | 93.8 | 96.1 | 96.3 | 96.7 | 96.9 | 97.0 | 99.4 | 99.9
15 | 89.0 | 90.2 | 93.4 | 93.8 | 94.7 | 95.0 | 95.5 | 98.6 | 99.8
20 | 83.7 | 85.6 | 89.8 | 90.6 | 92.1 | 92.7 | 93.5 | 97.7 | 99.6
25 | 76.2 | 79.1 | 84.2 | 85.8 | 88.1 | 89.3 | 91.0 | 96.1 | 98.9
30 | 639 | 68.0 | 73.9 | 77.2 | 80.9 | 83.8 | 87.2 | 93.1 | 97.2
35 | 488 | 54.5 | 61.8 | 67.0 | 72.3 | 77.1 | 82.2 | 89.6 | 95.3
40 | 32.6 | 40.2 | 49.1 | 56.1 | 63.2 | 69.9 | 77.0 | 859 | 93.4
45 | 18.8 | 279 | 37.6 | 46.4 | 55.2 | 63.9 | 72.7 | 82.4 | 915
50 | 135 | 23.1 | 33.2 | 42.7 | 52.2 | 61.5 | 71.0 | 81.1 | 90.7

Table 3: Difference in F1 Score on Test Set I Between Cluster-
ing and Random Sampling Methods

€/pP | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90%
10 | -29 | -22 | 03 2.2 2.5 2.1 1.7 14 0.2
15 | -1.0 | 02 | -1.7 | 1.1 0.2 0.6 24 | -02 | 1.0
20 | 0.1 | 1.7 15 | -09 | 1.8 32 | -10 | -1.7 | 14
25 | 29 3.8 0.6 1.9 09 | -28 | -1.8 | 0.1 1.1
30 | 1.6 2.4 0.0 2.5 1.4 32 | -02 | 33 | -19
35 | 54 3.4 3.1 3.2 2.2 4.1 2.9 35 | -1.3
40 | 2.2 43 | -09 | 09 1.9 | -1.7 | 1.9 0.8 1.4
45 | 46 | -40 | -48 | 20 | -03 | 33 | -1.5 | 14 1.2
50 | 04 | 71 | 46 | -1.1 | 0.6 | -08 | 1.0 5.7 1.0
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Table 4: Recall on Test Set I

e/P | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90%
10 | 82.1 | 82.6 | 75.6 | 789 | 78.0 | 723 | 76.4 | 77.9 | 81.7
15 | 80.9 | 78.3 | 83.9 | 76.5 | 76.5 | 75.9 | 73.3 | 80.5 | 76.7
20 | 763 | 77.4 | 81.0 | 77.7 | 82.0 | 82.0 | 75.8 | 81.5 | 77.5
25 | 785 | 81.7 | 824 | 79.1 | 80.8 | 80.1 | 79.1 | 80.2 | 87.1
30 | 79.7 | 75.9 | 85.7 | 76.6 | 74.0 | 76.7 | 78.6 | 79.2 | 79.5
35 | 813 | 763 | 825 | 742 | 73.6 | 75.2 | 75.4 | 83.6 | 77.2
40 | 79.3 | 84.6 | 82.0 | 83.6 | 80.2 | 80.8 | 81.4 | 79.7 | 79.7
45 | 593 | 634 | 69.6 | 82.6 | 79.2 | 79.4 | 81.9 | 77.4 | 79.3
50 | 388 | 62.5 | 67.5 | 69.4 | 70.1 | 73.2 | 72.7 | 80.9 | 81.9

Table 5: Precision on Test Set I

€/P | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90%
10 | 494 | 489 | 559 | 57.1 | 59.1 | 60.2 | 57.4 | 57.5 | 52.7
15 | 51.9 | 55.6 | 51.0 | 57.8 | 57.0 | 57.2 | 60.9 | 54.0 | 58.2
20 | 533 | 54.8 | 54.6 | 54.4 | 55.6 | 56.8 | 54.2 | 52.1 | 56.9
25 | 56.5 | 55.4 | 534 | 56.4 | 54.0 | 50.8 | 52.1 | 56.2 | 52.1
30 | 51.7 | 54.3 | 48.7 | 56.5 | 57.0 | 58.2 | 54.3 | 59.2 | 52.7
35 | 53.,5 | 55.0 | 52.5 | 57.5 | 55.8 | 59.2 | 59.3 | 56.4 | 53.9
40 | 46.8 | 48.6 | 45.9 | 48.1 | 52.3 | 49.0 | 53.3 | 54.3 | 55.9
45 | 40.1 | 43.5 | 42.0 | 47.8 | 47.3 | 53.1 | 47.9 | 55.6 | 55.4
50 | 37.7 | 352 413 | 48.2 | 52.0 | 50.7 | 55.8 | 58.9 | 53.6

Table 6: Difference in F1 Score on Test Set II Between Clus-
tering and Random Sampling Methods

e/P | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90%
10 | -0.2 | -0.1 | -0.2 | 0.1 0.5 00 | -0.1 | 0.2 0.2
15 | -03 | 0.1 | -0.1 | -0.4 | -0.2 | 0.0 05 | -0.2 | 0.2
20 | 0.2 0.1 00 | -0.1 | 0.0 | -0.2 | 0.0 0.0 | -0.4
25 | 0.0 02 | -01|-02 ] -03| 00 | -04 | 0.1 0.2
30 | 00 | -0.2 | 01 | -0.1 | 0.0 0.1 0.1 0.6 | -0.1
35 03 |-02| 01 | -02]-02 | 0.0 0.1 04 | -0.1
40 | -08 | 0.1 | -0.3 | 0.1 0.1 02 | -03 | -0.2 | 0.2
45 | 29 | 38 -17 | 02 | -02 | 03 | -0.2 | 0.1 | -0.3
50 | 1.9 00 | -13 | 02 | -1.3 | -09 | -0.8 | -04 | 0.1

with the largest positive difference of 5.7% is at (¢ = 50, P = 80).
This corresponds to a dataset size of 81.1% and F1 score of 68.2. The
second-best model is at (¢ = 35, P = 10). It has a difference in F1
score of 5.4%. The dataset size is 48.8% and the F1 score is 64.6.
Tables 4 and 5 show the recall and precision values obtained on
Test Set I for each combination of € and P. These tables provide a
way to choose different models that suit various applications. For
example, when the detection of HS is more important (e.g., defect
analysis), models having the highest recall can be used such as the
one at (¢ = 25, P = 90) which has a recall of 87%. For applications
where the cost of false alarms is high (e.g., design), then models
having high precision can be selected. An example of this is the
model at (e = 15, P = 70) which has the highest precision of about
61%. A trade-off between recall and precision can also be made
by maximizing F1 score. Hence, clustering and sampling enable
customization of the training data to achieve different outcomes.
Table 7 lists several models trained using different subsets of
the ICCAD-2019 dataset. The first model was trained using the
full ICCAD-2019 dataset. The following models were trained using
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Table 7: Comparison of Mobilenet Models Trained with Dif-
ferent Sampled Datasets using ICCAD-2019 Test Set I

# Description Dataset Size | Training Time (s) | Recall | Precision | F1
1 Baseline 100% 300 (100%) 86.7 52.2 65.2
2 €=50,P =280 81.10% 200 (66.7%) 80.9 58.9 68.2
3 | Random Sampling 81.10% 200 (66.7%) 80.4 51.2 62.5
4 €=35P=10 48.80% 100 (33.3%) 81.3 53.5 64.6
5 | Random Sampling 48.80% 100 (33.3%) 84.8 45.4 59.2

reduced datasets obtained via our proposed approach in addition to
the random sampling approach. Comparing models 2 and 3, it can
be seen that while random sampling lead to a drop in the F1 score
metric relative to the baseline model, the proposed method was able
to reduce the run time by around 33% while obtaining a higher F1
score than the baseline. Models 4 and 5 confirm these results even
further. The large data reduction using random sampling caused
the F1 score to drop below 60% while the same reduction using our
proposed method achieved almost the same F1 score as the baseline.
This shows that clustering and sampling the training dataset results
in choosing better representatives, thus, reducing the time needed
for training and improving the data balance.

For Test Set II, the difference in F1 score between clustering and
random sampling is not significant as shown in Table 6. This proves
that the lack of coverage in the training dataset is the dominat-
ing factor, hence our proposed method for data selection will not
influence the final trained model. Therefore, data enrichment of
the training dataset is needed to improve the model and show the
value of dataset selection. Synthetic pattern generation can be used
to enrich the training dataset. In [16], a new method was intro-
duced where subtle differences between patterns were generated
by randomly moving pattern edges. Exploring similar techniques is
needed to create richer datasets for ML hotspot detection models.

5 CONCLUSION AND FUTURE WORK

In this paper, we presented an efficient data sampling approach for
selecting the most representative samples for machine learning-
based hotspot detection. The latent features obtained using au-
toencoders were used to reduce the dimensionality of the data
points. Then, these features were used for pattern clustering. This
method allows users to obtain representative training patterns for
ML hotspot detection. We showed that this technique gives the
ability to reduce the amount of data needed to train ML models
while maintaining the levels of recall and precision. This can be
attributed to the fact that our data sampling approach strikes a
balance between the number of HS and NHS. This, in turn, leads to
a better balanced training dataset that results in building improved
HS detection models in a shorter period of time.

Finally, as a recommendation for future work, it would be bene-
ficial to build larger benchmark datasets having more pattern vari-
ations to test and evaluate this method in an industrial IC design
scenario.
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