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Abstract—Spectrum sensing in wideband cognitive radio net-
works is challenged by several factors such as hidden primary
users (PUs), overhead on network resources, and the requirement
of high sampling rate. Compressive sensing has been proven
effective to elevate some of these problems through efficient
sampling and exploiting the underlying sparse structure of
the measured frequency spectrum. In this paper, we propose
an approach for collaborative compressive spectrum sensing.
The proposed approach achieves improved sensing performance
through utilizing Kronecker sparsifying bases to exploit the
two dimensional sparse structure in the measured spectrum
at different, spatially separated cognitive radios. Experimental
analysis through simulation shows that the proposed scheme
can substantially reduce the mean square error (MSE) of the
recovered power spectrum density over conventional schemes
while maintaining the use of a low-rate ADC. We also show that
we can achieve dramatically lower MSE under low compression
ratios using a dense measurement matrix but using Nyquist rate
ADC.

Index Terms—Spectrum Sensing, Cognitive Radios, Kronecker
Compressive Sensing

I. INTRODUCTION

The problem of spectrum sensing has gained a new di-
mension with the arrival of cognitive radios and the concept
of opportunistic spectrum access [1]. In such systems, a
cognitive radio (CR) is expected to obtain awareness about
the spectrum usage and the existence of primary users in a
geographical area, and then utilize this awareness to restrict
their transmission to frequency bands that are not occupied by
primary users. Spectrum sensing task is considered one of the
most challenging tasks in cognitive radio systems, specially
with the wideband that these systems are expected to scan
and utilize.

There are many challenging issues that face wideband
spectrum sensing for CR applications. One of theses issues
is the hidden primary user problem [2], where the cognitive
radio device fails to detect the primary transmitter’s signal,
causing unwanted interference at the primary user receiver.
This problem occurs due to many factors, such as the relative
locations of devices, severe multipath fading and shadowing.
Cooperative sensing is proposed as a solution for handling
the hidden primary user problem [3], where exploiting spatial
diversity among several collaborating CRs was shown to be an
effective method to improve the detection performance, but at

the expense of cooperation overhead on the network resources
[4].

Another major challenge of wideband spectrum sensing is
the need of high sampling rate, and high resolution analog to
digital converters (ADCs) with large dynamic range to deal
with wideband spectrum sensing [1]. Compressive sampling
has been used as one of the preferred solutions to overcome
ADCs constraints in cognitive radio networks, as it enables the
sampling of the wideband signals at sub-Nyquist rate as long
as the spectrum is underutilized, which is a valid assumption
in cognitive radio networks [5].

One of the first attempts to use compressive spectrum
sensing was [6], where the authors proposed a scheme which
samples the spectrum at Nyquist rate and then performs
compressive sampling on the autocorrelation function of the
sampled signal. A coarse spectrum is recovered and used to
estimate the location of spectrum edges, and then smoothed
over the recovered edges to find accurate spectrum. The
main underlying assumption is that the spectrum is piecewise
constant, so there are small number of edges in the frequency
domain. A following approach was proposed in [7], where the
wideband analog signal is directly captured by an analog to
information converter, solving the bottleneck in the sampling
rate presented in the previous scheme.

Several papers tried to elicit solutions for both problems
simultaneously, such as the work in [8], which uses distributed
compressive spectrum sensing recovery algorithm and shows a
performance gain over the single CR scheme presented in [7].
Instead of assuming a piecewise constant spectrum, it assumes
that spectrum has a slotted frequency segmentation structure
like OFDM. They also develop distributed fusion techniques
for multi-hop large networks operating in frequency selective
fading channels .

All of the previous approaches have only considered the
signal structure at each CR, utilizing different sparse structure
assumptions to reduce the number of measurements needed.
In this paper, we propose a novel approach to the problem by
making use of the correlation between the measurements of
different cognitive radios in addition to the special structure
of the spectrum at each CR. This is achieved by using a
Kronecker product matrix as a sparsifying basis, which enables
us to jointly model the different types of structures present
in the signal and to exploit the two dimensional correlation



nature of the collaborative observations. We build a new
recovery approach that utilizes Kronecker spectrum sensing to
recover the spectrum with fewer number of samples and with
improved noise behavior, which alleviates the drawbacks of
the cooperative spectrum sensing represented by the overhead
data mentioned earlier.

We experiment our approach under a modified signal ensem-
ble model that addresses the problem of hidden primary user.
We propose several different measurements matrices, and show
through simulation results that the proposed approach can sub-
stantially reduce the mean square error of the recovered power
spectrum density by about 50% over conventional schemes
at low compression ratio (around 0.2) while maintaining the
use of low-rate ADC. We also show that by using a dense
measurement matrix we can achieve a dramatically low MSE
under low compression ratios. However, such matrix can only
be used under Nyquest rate ADC.

The rest of the paper is organized as follows. In section II
we explain the signal model and the spectrum sensing problem
of interest. An overview of different trends in Compressive
Sensing (CS) is presented in section III. Section IV develops
the Kronecker approach for compressive collaborative spec-
trum sensing. Simulation results are presented in Section V
to show the effectiveness of the proposed compressed sensing
and distributed fusion techniques. We finish with concluding
remarks in Section VI.

II. SIGNAL MODEL AND PROBLEM STATEMENT

We consider a network of K cognitive radio terminals,
distributed randomly in a certain geographic area and per-
forming collaborative spectrum sensing through a centralized
fusion center (FC), as shown in Fig. 1a. Each CR locally
monitors P non-overlapped channels, where each channel is
either occupied by a primary user or unoccupied. We assume
a low ratio of occupied channels U/P , where U is the number
of active PUs and P is the total number of PUs; this low ratio
of occupied channels is due to the low percentage of spectrum
occupancy by active radios, which is normally in the range of
15% to 85% [9].

Each CR captures a wideband analog N dimensional signal
xk ∈ RN , where the subscript k denotes a specific CR
terminal. The signal xk is captured using the pseudo random
demodulation scheme for compressive sampling presented in
[10]. The autocorrelations of the measurements are sent syn-
chronously to the fusion center over Additive White Gaussian
Noise (AWGN) wireless channel as shown in Fig. 1b.

The recovered signals at FC can be modeled as an N ×K
matrix, which can be written as:

X = [x1,x2, · · · ,xK ] =





x1
1 x1

2 · · · x1
K

x2
1 x2

2 · · · x2
K

...
...

. . .
...

xN
1 xN

2 · · · xN
K





, (1)

(a) An overview of the considered system model

(b) The signal model

Fig. 1. Compressive sensing acquisition and recovery scheme

where xj
i represents the j-th measurment of the i-th CR.

This way, the columns of the matrix represent the individual
signals of each CR corresponding to different snapshots, while
the rows of the matrix represent the same snapshot of the
signal at different cognitive radio terminals.

We use a signals ensemble that is a modified version
of the joint sparsity model (JSM2) presented in [8], [11].
The original (JSM2) model assumes only common sparse
support, neglecting the possible effect of hidden users, while
the (JSM1) model assumes common signal amplitude which
is valid only if CRs are distributed in very small area. The
proposed modified model (JSM2M) relaxes these assumptions
and generates signals which have a common sparse support in
frequency domain with different amplitudes plus innovations
due to hidden primary user problem.

III. APPLYING CS: A MATHEMATICAL OVERVIEW

In this section, we briefly overview the mathematical tools
that are used in the compressive acquisition of signals and
their recovery algorithms. We start by describing Compressive
Sensing (CS), then we explain in details how to use distributed
compressive sensing. Finally, we discuss how to obtain the
transformation bases required by CS through Kronecker prod-
uct bases.

A. Compressive sensing

Compressive sensing is a data acquisition technique that
allows for the recovery of a signal from a small number of
non-adaptive linear measurements, under the condition that the
signal is sparse in some domain [12]–[14]. Assume a signal
x1 ∈ RN that has a sparse representation in some domain
Ψ such as Fourier transform, Wavelet, or Discrete Cosine
Transform (DCT), such that

x1 = Ψs1, (2)



where the N dimensional vector s1 is a sparse vector. It is
said that s1 is K sparse if it has at most K non-zero entries
and K << N . The signal x1 can be acquired through M
linear measurements of x1 where, M < N , according to the
following equation:

y1 = Φx1 = ΦΨs1 = Θs1, (3)

where Φ is M ×N measurement matrix.
The CS theory proves that under certain conditions on the

measurement matrix Φ, the sparse vector s1 can be recovered
by solving the following �1 minimization problem,

ŝ1 = argmin �s1�1 such that Θs1 = y1. (4)

Which can be solved efficiently using linear programming
approaches such as Basis Pursuit [12], [14].

B. Distributed compressive sensing

Distributed compressive sensing (DCS) is a new distributed
coding algorithm for simultaneously acquiring and recovering
multiple signals which share the same sparsity order and
locations of non zero components [15], [11]. The DCS theory
relies on a new notion that exploits the joint sparsity of a
signal ensemble.

Y2 = ΦX2 = ΦΨS2, (5)

where Y2 is an M × J matrix, J is the number of signals in
the ensemble, and S2 is N ×J sparse matrix with a common
sparse support and different coefficient values, which might
not be a valid assumption in all cases. We can recover the
signals by using Simultaneous Orthogonal Matching Pursuit
(SOMP) algorithm presented in [15]. DCS-SOMP is an ef-
ficient greedy algorithm for joint signal recovery based on
the SOMP algorithm for simultaneous sparse approximation
with only K measurements not M like the conventional �1
algorithm.

C. Kronecker compressive sensing

Kronecker Compressive Sensing (KCS) is one of the re-
cently developed compressive sensing techniques. In contrast
to DCS, which exploits joint sparsity in one dimension, KCS
exploits the structure of a multidimensional signal in every
dimension [16], [17]. Kronecker product bases are well suited
for CS applications concerning multidimensional signals, i.e.,
signals that capture information from an event that spans
multiple dimensions, such as space, time, frequency, etc. These
bases can be used both to obtain sparse or compressible
representations of many real signals. KCS depends on the
concept that every dimension has its own sparsifying basis,
so we can jointly apply these sparsifying bases by getting the
Kronecker product of all sparsifying matrices.

We assume that a three dimensional signal is represented
by a 3-D matrix X3, where X3 ∈ RN1×N2×N3. This signal
can be captured using Kronecker product measurement matrix
Φk = Φk1 ⊗Φk2 ⊗Φk3 , where Φk1,Φk2, and Φk3 are the
measurement matrices that operate individually on portions

of the multidimensional signal and ⊗ denotes the Kronecker
product. The measurement vector y3 can be written as

y3 = Φkx3 = ΦkΨks3 = Θs3. (6)

The sparsifying basic Ψk = Ψk1 ⊗ Ψk2 ⊗ Ψk3 is the
Kronecker product of all individual bases, where Ψk1,Ψk2,
and Ψk3 are the sparsifying bases for the first, second, and
third dimensions, respectively, and x3 and s3 are the column
vector-reshaped representation of the matrix X3 and the sparse
coefficient matrix S3, respectively.

We may then recover s3 by solving �1 minimization pro-
gram using Basis Pursuit.

IV. KRONECKER COMPRESSIVE COLLABORATIVE
SPECTRUM SENSING

In our proposed approach, we utilize the Kronecker CS
technique to exploit the different structures embedded in the
signal, which allows us to recover the spectrum measurements
with a better accuracy using fewer number of samples. We use
a sparsifying basis which makes use of the piecewise constant
structure of the power spectrum density across different fre-
quency channels, and another sparsifying basis which exploits
the correlation structure of the measurements from different
CR terminals. Finally, we propose a combined structure which
exploits both dimensions for signal recovery.

A. Sparsifying basis along columns (time) of the matrix X

The signal is captured at each CR terminal using the method
stated in [7], the signal xk is sampled at sub-Nyquist rate by
analog to information converter according to

yk = ΦAxk, (7)

where yk is the measurement vector and ΦA is the M × N
random measurement matrix with i.i.d. Gaussian entries. De-
note the autocorrelation at lag j by rx(j) = E(xnx∗

j−n).
Denote the 2N × 1 autocorrelation vector of xk by rkx =
[0, rx(−N + 1), . . . , rx(N − 1)]T . The Nyquist rate autocor-
relation vector and the compressed autocorrelation vector are
related by the following equation

rky = ΦIIrkx, (8)

where rkx and rky denote the autocorrelation vectors for xk

and yk, respectively. The matrix ΦII is formed as follows:

ΦII =

�
ΦAΦ11 ΦAΦ22

ΦAΦ33 ΦAΦ44

�
. (9)

Let φ∗
i,j denote the (i, j)-th element of ΦA. The M×N matrix

ΦA has its (i, j)-th elements given by
�
ΦA

�
i,i

=

�
0 i = 1, j = 1, · · · , N ,
φM+2−i i �= 1, j = 1, · · · , N ,

and the N ×N matrices Φ11,Φ22,Φ33, and Φ44 are given,
respectively, by

Φ11 = hankel([0N×1], [0 φ̇1,1 · · ·φ∗
1,N ]),

Φ22 = hankel([φ∗
1,1 · · ·φ∗

1,N ], [φ∗
1,N 01×(N−1)]),



Φ33 = teoplitz([0N×1], [0 φ1,N · · ·φ1,2]),

Φ44 = teoplitz([φ1,1 · · ·φ1,N ], [φ1,1 01×(N−1)]),

where hankel(c, r) is a hankel matrix (i.e., symmetric and
constant across the anti-diagonals) whose first column is c and
last row is r, toeplitz(c, r) is a toeplitz matrix (i.e., symmetric
and constant across the diagonals) whose first column is c
and first row is r, 0N×1 is a column vector of N zeros, and
01×(N−1) is a row vector of N − 1 zeros.

The power spectrum density (PSD) is the Fourier transform
of the autocorrelation function as

Sk(f) = Frkx, (10)

where F denotes 2N ×2N discrete Fourier transform matrix.
The edges of the spectrum are sparse in frequency domain
and can be approximated using the differentiation of PSD as
follows

zk = ΓSk(f) = ΓFrkx, (11)

where Γ is the first order difference matrix given by

Γ =





1 0 0 · · · 0
−1 1 0 · · · 0

0 −1 1
. . . 0

...
. . . . . . . . .

...
0 · · · 0 −1 1




.

The structure of the signals x1,x2, · · · ,xK which is ob-
servable on each column of the matrix could be sparsified by
the sparsifying matrix Ψ1 as

rkx = (ΓF )−1zk = Ψ1zk. (12)

B. Sparsifying basis along rows (space) of the matrix X

We assume that the values of the measurements which
span all the nearby cognitive radio stations x1,x2, · · · ,xN

are expected to be highly correlated [19]. Therefore, it is
quite reasonable to assume that xj is compressible, where the
piecewise smooth signals tend to be compressible in wavelet
basis as [20]

xj = Ψ2s
j , (13)

where xj is a K × 1 column vector, Ψ2 is a K ×K wavelet
sparsifying basis matrix and sj is a K × 1 column vector
representing the sparse coefficient of vector xj in the basis
Ψ2.

C. Combined structure using the Kronecker product

The Kronecker product is used not only for the generation of
sparsifying basis that combines both structures presented in the
signal, but also for the formation of the measurement matrix
used in compressive sensing. Assuming that we use the same
Analog to Information Converter with the same measurement
matrix at each CR terminal ΦA, then from equation (8) we
can find the compressed autocorrelation matrix for all CRs
through the following equation

Ry = ΦIIRx, (14)

where Rx and Ry matrices are given by

Rx = [r1x, r2x, · · · , rKx]2N×K ,

Ry = [r1y, r2y, · · · , rKy]2M×K .

The joint 2MK×2NK measurement matrix Φ1 can be given
as follows:

Φ1 = IK ⊗ΦII , (15)

Φ1 =





ΦII 02M×2N · · · 02M×2N

02M×2N ΦII
. . .

...
...

. . . . . .
...

02M×2N · · · · · · ΦII




, (16)

where IK denotes the K ×K identity matrix.
From Eq. (14) we can express the reshaped vector of Ry

in the following form

ry = Φ1rx, (17)

where rx and ry denote the reshaped vectors of Rx and Rx,
respectively, given as follows.

ry = [RT
y (:, 1),R

T
y (:, 2), · · · ,RT

y (:,K)]
T
.

rx = [RT
x (:, 1),R

T
x (:, 2), · · · ,RT

x (:,K)]
T
.

We can now generate the sparsifying matrix Ψ, which
combines the structures of both the rows and columns of
the matrix X . The global sparsifying basis is the Kronecker
product of both sparsifying bases presented in equations (12)
and (13) and is given by

Ψ = Ψ1 ⊗Ψ2. (18)

The reshaped vector of autocorellation matrix Rx can be
viewed in Ψ domain as follows

rx = Ψe, (19)

where e is the sparse coefficient vector in the basis Ψ , also the
reshaped vector of autocorellation matrix Ry can be viewed
in Ψ domain from (17) as

ry = Φ1Ψe. (20)

The edges of the spectrum e can be recovered by the Basis
Pursuit algorithm using the following �1 minimization:

ê = argmin �e�1 subject to Φ1Ψe = ry. (21)

The reshaped recovered vector can be estimated by

r̂x = Ψê. (22)

The recovered power spectrum densities seen by the K cog-
nitive radio terminals at FC ŜN×K can be estimated by

Ŝ = FR̂x, (23)

where R̂x is the reshaped matrix from the vector r̂x.



TABLE I
THE SPARSITY ORDER OF DIFFERENT SIGNAL MODELS

Signal Model JSM2 JSM2M

Kronecker basis Ψ 7 17

traditional basis Ψ1 47 47

V. SIMULATION RESULTS

In this section, we perform numerical simulations to illus-
trate the performance of the proposed Kronecker approach. In
all of our experiments, we consider a wideband spectrum of
interest with a bandwidth in the range [50, 150] MHz centred
around a carrier frequency fc. The PSD is smooth within each
subband, but exhibits a discontinuous change between adjacent
subbands similar to [6], with number of samples N = 128.
The network consists of K = 8 CRs. The total number of PU
P = 6, and the number of active PU U = 3. The Daubechies
wavelet ”db4” is used in forming the sparsifying basis Ψ2.

The received signal is corrupted by additive white Gaussian
noise and the signal to noise ratio is considered as the inverse
of the noise variance and is set to SNR = 3 dB.

In order to compare the performance of our proposed ap-
proach with current approaches like [8], we use the normalized
mean square error between the average of the recovered
spectrum and the average of the noise free spectrum versus
the Compression Ratio (M/N ) as our performance criterion.

In the first experiment, we examine the effect of ensemble
model selection and recovery algorithm on the sparsity order
K (the number of non zero elements). The sparsity orders
of the different ensembles models under both Kronecker
and traditional sparsifying bases are shown in Table I. It is
obvious that the signal has the sparsest representation (lowest
sparsity order) under the proposed Kronecker basis Ψ. This
proves that the proposed approach can exploit more underlying
sparsity than the 1-D based approach since it exploits different
structure presented in the ensemble (like the strong correlation
between the measurements at different CRs), as compared to
the traditional sparsifying basis Ψ1 which only works on a
single dimension of the received signals (intra-signal).

In the second experiment, we compare the performance
of different recovery algorithms using the same Kronecker
measurement matrix presented in (16). Fig. 2 elucidates a no-
ticeable performance improvement while using a very low rate
compressive sampler, as we can achieve a lower MSE using
the Kronecker approach specially under low compression ratio
(about 50% reduction at M/N = 0.2) as compared to both the
Simultaneous Orthogonal Matching Pursuit (SOMP) presented
in [8] with Ψ1 as sparsifying basis, and the Independent
Recovery using Basic Pursuit(BP) algorithm [12].

In the third experiment, we evaluate the performance of col-
laborative compressive sensing under different measurement
matrices such as:

1) Kronecker measurement matrix in the proposed approach
Φ1 = IK ⊗ΦII where ΦII is the matrix given in (8)

2) Kronecker measurement matrix Φ2 = IK ⊗ΦBB where

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10−4

10−3

10−2

10−1

Compression Ratio M/N

M
SE

 

 
Kronecker
SOMP
independent recovery

Fig. 2. MSE performance versus Compression Ratio under different recovery
algorithms

ΦBB is a matrix formed in the same way as ΦII but by
substituting for ΦA by a Bernoulli measurement matrix
rather than a Gaussian matrix as in (8).

3) Global random dense measurement 2KM×2KN matrix
Φ3 with i.i.d. Gaussian entries.

The performance results for these different measurement
matrices are shown in Fig. 3. It is evident from the figure that
the dense matrix Φ3 achieves a significant improvement in the
MSE performance as compared to the Kronecker measurement
matrices, especially at very low compression ratios (less than
0.2). However, we cannot theoretically find a dense matrix
that relates Nyquist autocorrelation vector and the compressed
autocorrelation vectors in the way shown in Eq. (14). This
results in a computational bottleneck, as we have to sample
the signals at Nyquist rate, find the autocorrelation function,
compress it using a compressive sampler, and then send it
compressed to the FC. While this may deprive our system from
the advantage of using a low-rate ADC, it can significantly
reduce the cooperation overload on some of the radio resources
needed to achieve communication between the CRs and the
FC like the number of multiple access channels. A similar
observation can be made for Bernoulli measurement matrix
Φ2, which results in the worst MSE performance. However, it
has the advantage of putting some CRs at sleep mode which
saves both power and bandwidth.

In the fourth experiment, we evaluate the performance
of collaborative compressive sensing using the dense mea-
surement matrix Φ3 under different sparsifying bases. The
four different sparsifying bases used in our simulation are as
follows. 1) SOMP algorithm with sparsifying basis Ψ1 [8]
2) Kronecker CS with Ψ = Ψ1⊗Ψ2. 3) Ψa = Ψ1⊗IDCT .
4) Ψb = Ψ1 ⊗ IK .

Fig. 4 depicts the effect of our choice of the sparsifying basis
in exploring the underlying structure of the measurements. The
Kronecker basis Ψ in Section IV performs significantly better
than all other bases. The parsifying bases Ψ1 and Ψb have
the largest MSE since these bases exploit the sparsity in only
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Fig. 3. MSE versus Compression Ratio using different measurements
matrices
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Fig. 4. MSE versus Compression Ratio under different sparsifying bases

one dimension. On the other hand, the sparsifying basis Ψa

exploits sparsity of 2-D signals, where the first dimension is
the ordinary sparsifying matrix Ψ1 of the individual signals
and the second is the DCT sparsifying basis. The signal in
the DCT domain is sparse only under the assumption that the
measurements have strong correlation without sudden peaks.
However, this is not the case when there is a hidden primary
user, since there will be sudden peaks which would destroy
the sparsity. Therefore, wavelet basis is more suitable for that
case and evinced the lowest MSE at very low compression
ratio.

VI. CONCLUSION

In this paper, we have developed an approach for collab-
orative spectrum sensing for cognitive radio networks. The
proposed approach exploits the underlying multi-dimensional
sparse structure in the measured spectrum observations at
different cognitive radios. This is achieved by formulating the
problem as a Kronecker compressive sensing recovery prob-
lem, and carefully designing suitable measurement and sparsi-

fying bases. We propose a modified signals ensemble model,
that accounts for the scenario of hidden primary user problem.
The performance using MSE under different sparsifying bases
and measurement matrices evinced a significant improvement,
as the Kronecker sparsifying basis exploits different structures
presented in the signal, which allows for significant reduction
in sampling rate, relaxes constraints put on the ADCs, and
finally reduces the amount of radio resources needed for the
communication between the CRs and the FC.
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