TWO DEGREE OF FREEDOM SYSTEMS

The number of degrees of freedom (DOF) of a system is the number of independent coordinates
necessary to define motion. Also, the number of DOF is equal to the number of masses multiplied
by the number of independent ways each mass can move. Consider the 2 DOF system shown below.

From Newton’s law, the equations of motion are:
mX, =— 1X1—C1)'(1+k2(X2 _X1)+C2(X2 _X1)+ F
] : . 1)
m,X, = —k3X2 —GC3X;, — kz (Xz - X1)_C2 (Xz - X1)+ Fz
Rearranging gives:
Mm%, +(c, +¢, ) % +(k +K, ) X, —C,%, —K,x, = F,
M, X, +(C, +C; ) %, +(K, +K; ) X, —C,% —k,x, = F,
These equations can be written in matrix form:
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[M]x}+[Clix}+[K]{x} ={F} (4)
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Defining:

we get:

Free Undamped Vibration

Setting the damping [C]and forcing {F}terms to zero, we get:
m%, + (K, +k, ), —k,x, =0 -
m,%, +(k, +K; )X, —k,x =0
Solution: we can assume that each mass undergoes harmonic motion of the same frequency and
phase. This is proved on page 4. The solution is thus written as:

X, = X, cos wt
X, = X, cos ot

(6)

or:



{x}={X}cosat (7)

{x}:&} ®)

Substituting into the equation of motion yields:

-0’ [M]{x}+[K]{x} ={0} = [[K]- o’ [M]]{x} ={0} Q)

This is an eigenvalue problem. For a non-trivial solution, the determinant must vanish so we have:

where

[K]-a*[m]=0 (10)
Or
2
‘—mla) +k, +k, 2—k2 o 1)
—k, -m,o” +k, +k;
For our problem, this results in:
(-my@® +k, +k, )(~m,@” +k, +k; )= (k) (~k,) =0 (12)
combining terms we get:
mm, (@) +(-m, (K, +k;) =, (K, +K,)) @ +(kk, + Kk, +kk;) =0 (13)

which is a quadratic equation in terms of . From this we can get:
2
e m, (k, +k3)+m2(k1+k2)4_r\/(ml(k2 +k;)+m, (kl+k2)) —4mm, (kk, +k,k; +kk;)

2mm,
These values of w are the natural frequencies of the system. The values of X; and X, remain to be
determined. To simplify the analysis, let m;=m,=m and k;=k,=ks=k. The determinant will be:

(14)

2k —ma® —k
=0 15
‘ —k 2k —ma® (15)
yielding the characteristic equation:
(2k—me?) —k2 =0 (16)

which has the solutions:

a)l:F , a)Z:\E (17)
m m

Note that these values are the solutions to this particular case (masses are identical, springs are
identical).To determine X; and X;, we need to substitute into

[[K]-e"[M] J{x} ={0}

. . : fk
with the values of @, and @, just obtained. Hence at o = @, =,|— we have:
m

2k—-ma? -k X g kK] [%:]
—k 2k—ma? || X, &k |IX,[

This has infinite number of solutions, but they must satisfy a certain ratio, namely:

X, [
bl .

Similarly, at a» we have:



—Mmw,? - X -k -k |[X
2k —ma, k 2 o = 1l _p (19)
—k 2k —ma,” | X, -k =k ||X,

o1 g

X
The ratio of amplitudes {Xl} defines a certain pattern of motion called the normal mode of
2

=lo] 24 0% =1

are called the modal vectors or eigenvectors. They define the mode shapes of the system. In this
particular case, if the system vibrates in its first mode, the masses will move in phase with the same
amplitudes, while in the second mode of vibration the masses move out of phase also with the same
amplitudes.

SO

vibration. The vectors

The solution for the vibration of the system at the first mode is:

{Xl(t)}=a{§l} cos(at +4) (21)

X, (t) 2)
and for the second mode:

()] _, [ X
{Xz (t)}_ Az{xz}wz cos(wt+4¢,) (22)
so the general solution is:
X X
{28} = Al{xz}wl cos(mt+¢)+A, {Xz}% cos(m,t +4,) (23)

where Az, Az, ¢ and ¢, are 4 constants to be determined from the initial conditions.



Proof: It was noted that the solution of the equations
m% +(k, +k, ) x, —k,x, =0
m, %, +(k, +K; )X, —k,% =0
takes the form:
X, =X;sinat , X, =X,sinat
meaning the masses undergo harmonic motions of the same frequency with no phase difference

between them. In order to justify this, let us re-write the equations of motions in a more general
form:

X +a,X +a,x, =0
X, +a,, X +a,X, =0
Now assume a general solution in the form:
X, =X;sinat , X, =X,sin(ot+ )
where a is taken to be different from y.There is no loss of generality in assuming no phase for x;
and only a phase difference £ between the two motions. We wish to prove that @, = w, and f=0.
Substituting into the equations of motion yields:

[y - |X,sin(at)+a,X,sin(wt+4)=0
a,, X, sin (oolt)+[a22 —~ wf] X,sin(w,t+p)=0
These relations must be valid for all t. Setting t=0 in the first equation gives:
a, X,sin(f)=0
since a;, and X, cannot be zero, we must have £ =0. Thus there can be no phase difference between

the harmonic motions of the two parts.
The first expression may then be written as:

[aﬂ —a)f] X, sin(at)+a,X,sin(w,t)=0

or

. 2_ X
s|n(a)2t) _ [wl aﬂ] L _ constant

sin(ayt) a, X,

Since the left hand side must be constant for all values of t, we must have w,=an and consequently
the harmonic motions occur at the same frequency.




Example

For various initial conditions, obtain the free response of the previous system havingm =1 and k =
1.

Solution

Recall the natural frequencies were

@:£%ﬂ ,@zfgzﬁ
RS o
and the general solution is:
bl =A ] smterara ] sniossa)
o] AR a3t

Differentiating w.r.t. time we get:

e ot

For the initial conditions

and the mode shapes were

hence

x(0)=5 %(0)=0
X,(0)=0 x,(0)=0
we have:
5=Asing + A,sing,
0=Asing —A,sing,
0= A cosg, ++/3A, cosg,
0= A cos¢, —/3A, cosg,
from which we get:
¢ =¢,=n/2
A=A =52

hence the solution is:

x (t)= g[cost +cos\/§t} % (t)= g[cost —cosﬁt}



x1(0)=5, x2(0)=0
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Modes of vibration contribute equally to the solution.

For the initial conditions

x(0)=1 %(0)=0 x(0)=1 %(0)=0
we get

h=¢=7/2,A=1A=0
hence the solution is:
x (t)=cost , x,(t)=cost
i.e. the masses move in-phase with the same amplitude and frequency 1 rad /s (mode 1)
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For the initial conditions
x0)=1 %(0)=0 x(0)=-1 x%(0)=0
we get
h=¢=n/2,A=0A =1
hence the solution is:
x (t)=cos\f3t , x,(t)=—cos3t
i.e. the masses move out-of-phase with the same amplitude and frequency J3 rad /s (mode 2)
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Forced vibration analysis

Consider the shown system

’-» Fosinat

k]_ k k2
) () ) )

The equations of motion are:

o il Lo
0 m,||% -k k+k, || X, 0

or:
[M]{x}+[K]{x}={F}sinot (25)
Seeking a steady-state solution in the form
{x}={X}sinot (26)
yields:
[[K]-@’ [M]]{X}sin et = {F}sin ot (27)
hence:
Pwkl—wzm1 —k Hxl}:{ﬁ)} 28)
—k k+k, —ao’m, || X, 0

which can be solved for the unknown amplitudes. For our special case where m;=m,=m and

ki=ko=k, we have:
- @? — X F
2k —o"m k 2 | )R (29)

{xl}{zk—wzm —k } {FO} (30)
X, —k  2k-&’m| |0

thus:

This results in:

(2k—a)2m)F0
N o o2
S
m m 0
or:
(2k—a)2m)F0 kF,
S P prm) B ey T P 2
where

k 3k
C()l: E , 602: H

are the natural frequencies obtained earlier. Plotting the amplitudes of the masses reveals that
resonance occurs when the frequency of excitation coincides with either of the two natural
frequencies of the system.






Dynamic vibration absorber

Consider the primary system shown, which is a model of a single DOF
vibrating structure, acted upon by a harmonic force. K,

TFosinat

Suppose that the exciting frequency, @, is constant and is equal to the natural frequency of the
system, i.e.

We wish to reduce the vibrations of m; at the exciting frequency .
We can do this by adding a secondary system, consisting of a mass
m, and spring k, as shown.

If we derive the equations of motion, we will get:
01 (% B
m, X N ki+k, —k; | % _ Fo sin ot
0 m,|[% -k, Kk, (% 0

[[K]-e*[M]J{x}={F} = {x}=[[K]-@*[M]]

Substituting into

{F)

yields:
X)) [k+k,-o'm &, | [F
{Xz}z[ -k, kz_a)zmj {0}
or:
X 1 k, —@’m, K, K
{Xz}_(k1+k2_a)2ml)(k2_a’2mz)_k22|: K, k1+k2—a)2mj{0}
hence:

 — Fo(kz—a)zmz)

Uk +k —o’m)(k, —w’m, ) k3
« _ Fk,

© (k- 0’m)(k, - 0m,) - k3
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now define

_ |k _ |k
Wy \/;'wzz m,

For the primary system (without absorber), resonance occurs when

fk

1 _
— =y
m,

For X; to be zero at this frequency, we must have
Therefore if k, and m, are chosen such that

ko ke
ml m2

then X; will be zero at w=an;. This is what we call a tuned dynamic absorber, in which
Wy = Wy

At this frequency, the displacement of X, will be:
X, = Fok, F

(kﬁkz—klmlj(kz—kzmzj—kj e
m, m,

Adding the secondary system (dynamic absorber) will result in zero vibrations of the primary mass
at an1=an,. However, two resonant frequencies wn; and ay; are introduced at which the amplitude
of X; becomes significantly large. Thus the dynamic absorber can only be useful when the
disturbing frequency is constant.
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How to design the vibration absorber?

1. Based on space limitation. Choose k; and m; such that
ko ke
ml m2

F

X,=—-2

k2
2. Based on how far apart should the natural frequencies be. The two new natural frequencies of
the system can be obtained by setting the determinant equal to zero:

noting that the amplitude of m, will be

k, +k, —@’m, -k,

, _|=0
-k, kK, —om,

which gives:
(k, +k, —’m;)(k, —@’m, ) —kZ =0

w4—w2(ﬁ+ﬁ+ﬁ}+ﬁ:0
rn.l. ml m2 mlmZ

This gives:

which can be put in the form:
o'~ o’ (a)lzl + peg, + o, ) + a0, =0

m :
where u=—% =mass ratio

The roots of this equation an; and ay; satisfy the relations:
a)r?l : wﬁz = 60121 'a)lzl
a)r?l + a)r?z = a)lzl + a)zzz (1+ ﬂ)
But for a tuned absorber we have @, = @,, hence
oy ) o5

2

2 =1
W,, Wy

2 2
, ,
_’;1+_”22:2_|_’u
Wy, W,,

As you increase the mass ratio (), the natural frequencies an1 and wn, will grow further apart. Note
that an; is always closer to an; than an,.
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