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TWO DEGREE OF FREEDOM SYSTEMS 

 

The number of degrees of freedom (DOF) of a system is the number of independent coordinates 

necessary to define motion. Also, the number of DOF is equal to the number of masses multiplied 

by the number of independent ways each mass can move. Consider the 2 DOF system shown below. 

 
 

From Newton’s law, the equations of motion are: 

 
   

   

1 1 1 1 1 1 2 2 1 2 2 1 1

2 2 3 2 3 2 2 2 1 2 2 1 2

m x k x c x k x x c x x F

m x k x c x k x x c x x F

       

       

   

   
 (1) 

Rearranging gives: 

 
   

   

1 1 1 2 1 1 2 1 2 2 2 2 1

2 2 2 3 2 2 3 2 2 1 2 1 2

m x c c x k k x c x k x F

m x c c x k k x c x k x F

      

      

  

  
 (2) 

These equations can be written in matrix form: 

 
1 2 2 1 2 21 1 1 1 1

2 2 3 2 2 32 2 2 2 2

0

0

c c c k k km x x x F

c c c k k km x x x F

               
             

               

 

 
 (3) 

Defining: 

   

     

1 1

2 2

1 2 2 1 2 21

2 2 3 2 2 32

0

0

x F
x f

x F

c c c k k km
M C K

c c c k k km

   
    
   

       
      

        

 

we get: 

           M x C x K x F     (4) 

 

 

Free Undamped Vibration 

 

Setting the damping [C]and forcing {F}terms to zero, we get: 

 
 

 

1 1 1 2 1 2 2

2 2 2 3 2 2 1

0

0

m x k k x k x

m x k k x k x

   

   




 (5) 

Solution: we can assume that each mass undergoes harmonic motion of the same frequency and 

phase. This is proved on page 4. The solution is thus written as:  

 
1 1

2 2

cos

cos

x X t

x X t








 (6) 

 

or: 

k1 

c1 

m1 

k2 

c2 

m2 

k3 

c3 

x1 x2 

F1 F2 



 2 

    cosx X t  (7) 

where 

   1

2

X
X

X

 
  
 

 (8) 

Substituting into the equation of motion yields: 

                2 20 0M x K x K M x          (9) 

This is an eigenvalue problem. For a non-trivial solution, the determinant must vanish so we have: 

    2 0K M   (10) 

Or 

 
2

1 1 2 2

2

2 2 2 3

0
m k k k

k m k k





   


   
 (11) 

For our problem, this results in: 

      2 2

1 1 2 2 2 3 2 2 0m k k m k k k k            (12) 

combining terms we get: 

         
2

2 2

1 2 1 2 3 2 1 2 1 2 2 3 1 3 0m m m k k m k k k k k k k k           (13) 

which is a quadratic equation in terms of 2
.  From this we can get: 

 
          

2

1 2 3 2 1 2 1 2 3 2 1 2 1 2 1 2 2 3 1 32

1 2

4

2

m k k m k k m k k m k k m m k k k k k k

m m


         
  (14) 

These values of  are the natural frequencies of the system.  The values of X1 and X2 remain to be 

determined. To simplify the analysis, let m1=m2=m and k1=k2=k3=k. The determinant will be: 

 
2

2

2
0

2

k m k

k k m





 


 
 (15) 

yielding the characteristic equation: 

  
2

2 22 0k m k    (16) 

which has the solutions: 

 1 2

3
,

k k

m m
    (17) 

Note that these values are the solutions to this particular case (masses are identical, springs are 

identical).To determine X1 and X2, we need to substitute into 

       2 0K M x     

with the values of 1 2 and     just obtained. Hence at 1

k

m
    we have: 

2
1 11

2
2 21

2
0 0

2

X Xk kk m k

X Xk kk k m





        
        

       
 

This has infinite number of solutions, but they must satisfy a certain ratio, namely: 

 

1

1

2

1

1

X

X


   
   
  

 (18) 

 

Similarly, at 2 we have: 
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2

1 12

2
2 22

2
0 0

2

X Xk kk m k

X Xk kk k m





         
        

        
 (19) 

so 

 

2

1

2

1

1

X

X


   
   

  
 (20) 

The ratio of amplitudes 
1

2

X

X

 
 
 

 defines a certain pattern of motion called the normal mode of 

vibration. The vectors  

   
1 2

1 2

1 1

2 2

and 
X X

X X
X X 

 

   
    
   

 

are called the modal vectors or eigenvectors. They define the mode shapes of the system. In this 

particular case, if the system vibrates in its first mode, the masses will move in phase with the same 

amplitudes, while in the second mode of vibration the masses move out of phase also with the same 

amplitudes. 

 

The solution for the vibration of the system at the first mode is:  

 

 
 
 

 
1

1 1

1 1 1

2 2

cos
x t X

A t
x t X



 
    

    
    

 (21) 

and for the second mode: 

 
 
 

 
2

1 1

2 2 2

2 2

cos
x t X

A t
x t X



 
    

    
    

 (22) 

so the general solution is: 

 
 
 

   
1 2

1 1 1

1 1 1 2 2 2

2 2 2

cos cos
x t X X

A t A t
x t X X

 

   
      

        
      

 (23) 

 

where A1, A2, 1 and 2 are 4 constants to be determined from the initial conditions.   
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Proof: It was noted that the solution of the equations 

 

 

1 1 1 2 1 2 2

2 2 2 3 2 2 1

0

0

m x k k x k x

m x k k x k x

   

   




 

takes the form:  

1 1 2 2sin , sinx X t x X t    

meaning the masses undergo harmonic motions of the same frequency with no phase difference 

between them. In order to justify this, let us re-write the equations of motions in a more general 

form: 

1 11 1 12 2

2 21 1 22 2

0

0

x a x a x

x a x a x

  

  




 

Now assume a general solution in the form: 

1 1 1 2 2 2sin , sin( )x X t x X t      

where 2 is taken to be different from 1.There is no loss of generality in assuming no phase for x1 

and only a phase difference   between the two motions. We wish to prove that 1 2   and 0  . 

Substituting into the equations of motion yields: 

   

   

2

11 1 1 1 12 2 2

2

21 1 1 22 2 2 2

sin sin 0

sin sin 0

a X t a X t

a X t a X t

   

   

     

     

 

These relations must be valid for all t. Setting t=0 in the first equation gives: 

 12 2 sin 0a X    

since a12 and X2 cannot be zero, we must have 0  . Thus there can be no phase difference between 

the harmonic motions of the two parts. 

The first expression may then be written as: 

   2

11 1 1 1 12 2 2sin sin 0a X t a X t        

or 

 

 

2

1 11 12

1 12 2

sin
constant

sin

a Xt

t a X





     

 

Since the left hand side must be constant for all values of t, we must have 2=1 and consequently 

the harmonic motions occur at the same frequency. 
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Example 

For various initial conditions, obtain the free response of the previous system having m = 1 and k = 

1. 

Solution 

Recall the natural frequencies were 

1 2

3
1 , 3

k k

m m
      

and the mode shapes were 

1 2

1 1

2 2

1 1
,

1 1

X X

X X
 

      
        

      
 

and the general solution is: 

 
 

   
1 2

1 1 1

1 1 1 2 2 2

2 2 2

sin sin
x t X X

A t A t
x t X X

 

   
      

        
      

 

hence 

 
 

   1

1 1 2 2

2

1 1
sin sin 3

1 1

x t
A t A t

x t
 

      
        

      
 

Differentiating w.r.t. time we get: 

 
 

   1

1 1 2 2

2

1 1
cos 3 cos 3

1 1

x t
A t A t

x t
 

      
        

      




 

For the initial conditions 

1 1

2 2

(0) 5 (0) 0

(0) 0 (0) 0

x x

x x

 

 




 

we have: 

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

5 sin sin

0 sin sin

0 cos 3 cos

0 cos 3 cos

A A

A A

A A

A A

 

 

 

 

 

 

 

 

 

from which we get: 

1 2

1 2

2

5 2A A

   

 
 

hence the solution is: 

   1 2

5 5
cos cos 3 , cos cos 3

2 2
x t t t x t t t      
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Modes of vibration contribute equally to the solution. 

 

For the initial conditions 

1 1 2 2(0) 1 (0) 0 (0) 1 (0) 0x x x x      

we get 

1 2 1 22, 1, 0A A       

hence the solution is: 

   1 2cos , cosx t t x t t   

i.e. the masses move in-phase with the same amplitude and frequency 1 rad /s (mode 1) 
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For the initial conditions 

1 1 2 2(0) 1 (0) 0 (0) 1 (0) 0x x x x       

we get 

1 2 1 22, 0, 1A A       

hence the solution is: 

   1 2cos 3 , cos 3x t t x t t    

i.e. the masses move out-of-phase with the same amplitude and frequency 3  rad /s (mode 2) 
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Forced vibration analysis 

 

Consider the shown system 

 
 

The equations of motion are: 

 
1 1 1 1 0

2 2 2 2

0
sin

0 0

m x k k k x F
t

m x k k k x


          
         

          




 (24) 

or: 

        sinM x K x F t   (25) 

Seeking a steady-state solution in the form 

    sinx X t  (26) 

yields: 

        2 sin sinK M X t F t       (27) 

hence: 

 

2
1 01 1

2
22 2

0

X Fk k m k

Xk k k m





       
    

      
 (28) 

which can be solved for the unknown amplitudes. For our special case where m1=m2=m and 

k1=k2=k, we have: 

 
2

1 0

2
2

2

02

X Fk m k

Xk k m





      
    

     
 (29) 

thus: 

 

1
2

1 0

2
2

2

02

X Fk m k

X k k m







      
    

      
 (30) 

This results in: 

 

 2

0

1

2 2 22

0

2
1

3

k m F
X

k kX
m kFm m



 

 
  

   
            

 (31) 

or: 

 
 
     

2

0 0
1 22 2 2 2 2 2 2 2 2 2

1 2 1 2

2
,

k m F kF
X X

m m



       


 

   
 (32) 

where  

1 2

3
,

k k

m m
    

are the natural frequencies obtained earlier. Plotting the amplitudes of the masses reveals that 

resonance occurs when the frequency of excitation coincides with either of the two natural 

frequencies of the system. 

 

k1 k k2 

m1 m2 

F0 sint 



 9 

 
1 2 
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Dynamic vibration absorber 

 

Consider the primary system shown, which is a model of a single DOF 

vibrating structure, acted upon by a harmonic force. 

 
Suppose that the exciting frequency, , is constant and is equal to the natural frequency of the 

system, i.e. 

1

1

k

m
   

We wish to reduce the vibrations of m1 at the exciting frequency . 

We can do this by adding a secondary system, consisting of a mass 

m2 and spring k2 as shown. 

 

 
 

If we derive the equations of motion, we will get: 

1 1 1 2 2 1 0

2 2 2 2 2

0
sin

0 0

m x k k k x F
t

m x k k x


          
         

         




 

 

Substituting into 

               
1

2 2K M X F X K M F 


            

yields: 

 
1

2
1 01 2 1 2

2
2 2 2 2

0

X Fk k m k

X k k m







      
    

      
 

or: 

  

2
1 02 2 2

22 2 2
2 2 1 2 11 2 1 2 2 2

1

0

X Fk m k

X k k k mk k m k m k



 

    
    

         
 

hence: 

 

 
  

  

2

0 2 2

1 2 2 2

1 2 1 2 2 2

0 2
2 2 2 2

1 2 1 2 2 2

F k m
X

k k m k m k

F k
X

k k m k m k



 

 




   


   

 

 

 

 

k2 

m2 

m1 

F0 sint 

k1 

k1 

m1 
F0 sint 
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now define 

1 2
11 22

1 2

,
k k

m m
    

For the primary system (without absorber), resonance occurs when 

1
11

1

k

m
    

For X1 to be zero at this frequency, we must have 

2 2
2 2 22

2

0
k

k m
m

        

Therefore if k2 and m2 are chosen such that 

1 2

1 2

k k

m m
  

then X1 will be zero at =11. This is what we call a tuned dynamic absorber, in which 

11 22   

At this frequency, the displacement of X2 will be: 

0 2 0
2

2 21 2
1 2 1 2 2 2

1 2

F k F
X

kk k
k k m k m k

m m

  
  

     
  

 

 

Adding the secondary system (dynamic absorber) will result in zero vibrations of the primary mass 

at 11=22. However, two resonant frequencies n1 and n2 are introduced at which the amplitude 

of X1 becomes significantly large. Thus the dynamic absorber can only be useful when the 

disturbing frequency is constant. 

 

X1 

n1 



 n2 

No  

absorber 
With  

absorber 
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How to design the vibration absorber? 

 

1. Based on space limitation. Choose k2 and m2 such that  

1 2

1 2

k k

m m
  

noting that the amplitude of m2 will be 

0
2

2

F
X

k
   

2. Based on how far apart should the natural frequencies be. The two new natural frequencies of 

the system can be obtained by setting the determinant equal to zero: 

 
2

1 2 1 2

2

2 2 2

0
k k m k

k k m





  


 
 

which gives: 

  2 2 2

1 2 1 2 2 2 0k k m k m k       

This gives: 

4 2 1 2 2 1 2

1 1 2 1 2

0
k k k k k

m m m m m
 

 
     

 
 

which can be put in the form: 

 4 2 2 2 2 2 2

11 22 22 11 22 0            

where 2

1

mass ratio
m

m
    

The roots of this equation n1 and n2 satisfy the relations: 

 

2 2 2 2

1 2 11 11

2 2 2 2

1 2 11 22 1

n n

n n

   

    

  

   
 

But for a tuned absorber we have 11 22   hence 
2 2

1 2

2 2

22 22

2 2

1 2

2 2

22 22

1

2

n n

n n

 

 

 


 

 

  

 

 

As you increase the mass ratio (), the natural frequencies n1 and n2 will grow further apart. Note 

that n1 is always closer to 11 than n2. 
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